2 Проблема непротиворечивости

We use cookies. Read the Privacy and Cookie Policy

2

Проблема непротиворечивости

Для XIX столетия характерна резкая интенсификация и расширение проблематики математических исследований. Были решены многие важные математические проблемы, не поддававшиеся усилиям лучшие мыслителей прошлых времен. Возникли совершенно новые математические дисциплины. В различных областях математики были выдвинуты новые основополагающие принципы, а применение старых принципов стало гораздо более плодотворным благодаря их пересмотру с учетом новой, более совершенной техники математического мышления. Вот простой пример. Еще греческие математики выдвинули три задачи из области элементарной геометрии: разделить на три части произвольный угол при помощи только циркуля и линейки; построить куб, объем которого был бы вдвое больше объема данного куба; построить квадрат, площадь которого равнялась бы площади данного круга, Более двух тысяч лет эти задачи не поддавались решению, пока, наконец, в XIX столетии не было строго доказано, что предписываемые в них построения вообще нельзя осуществить. Эти результаты, интересные и сами по себе, вызвали глубокий интерес к изучению природы понятия числа и строения числового континуума (поскольку выяснилось, что для решения упомянутых задач недостаточны числа, являющиеся корнями уравнений, хорошо изученных еще античными математиками). Плодом этих исследований явились строгие определения, на основе которые удалось построить теории отрицательных, комплексных и иррациональных чисел. Была построена на прочной логической основе и общая теория действительных чисел. Возникла совершенно новая ветвь математики — теория бесконечных множеств и так называемых трансфинитных («бесконечных») чисел.

Но, пожалуй, наиболее важным достижением XIX века явилось решение еще одной задачи, также восходящей еще к грекам, которая с тех пор оставалась без ответа. В числе аксиом, на базе которых строилась евклидова систематизация геометрии, имеется так называемая аксиома параллельности. В предложенной Евклидом формулировке эта аксиома равносильна утверждению (хотя и не совпадает с ним), что через точку, лежащую вне данной прямой, можно провести единственную прямую, параллельную данной прямой. Еще античным математикам эта аксиома отнюдь не казалась самоочевидной. Поэтому они пытались доказать ее в качестве следствия из остальных аксиом Евклида, которые, напротив, представлялись им совершенно очевидными. Можно ли, однако, действительно получить искомое доказательство для аксиомы параллельности? Поколения математиков безуспешно пытались ответить на этот вопрос. Но неоднократные неудачи попыток построения искомого доказательства не означали еще, что никто не преуспеет в этом деле больше, чем в важной для человечества проблеме изобретения безотказно и на все времена действующего средства от насморка. Такое положение вещей продолжалось до середины XIX столетия — до тех пор, пока в работах Гаусса, Бойаи, Лобачевского, Римана и других математиков не была доказана невозможность вывода аксиомы параллельности из остальных аксиом евклидовой геометрии. Этот результат имел громадное значение для понимания природы нашего мышления. В первую очередь он привлек внимание к тому поразительному факту, что можно доказать в качестве теоремы невозможность доказательства некоторых утверждений средствами данной системы.

Как мы увидим ниже, теорема Гёделя, которой посвящена наша книга, состоит в доказательстве невозможности доказательства некоторых арифметических утверждений средствами арифметики. Кроме того, разрешение старой проблемы об аксиоме параллельности неизбежно приводило к выводу, что аксиоматика Евклида отнюдь не является последним словом геометрии, — ведь можно, оказывается, построить новые геометрические системы, исходя из перечней аксиом, отличных от евклидовых и даже несовместимых с ними. Например, как хорошо известно, чрезвычайно интересные и плодотворные результаты были получены заменой евклидовой аксиомы параллельных допущением, согласно которому через точку, лежащую вне данной прямой, можно провести более чем одну прямую, параллельную этой прямой, или же, напротив, допущением, согласно которому параллельных прямых вообще не бывает. Традиционное убеждение, что аксиомы геометрии (или вообще аксиомы любой науки) могут быть приняты на основании их «самоочевидности», было, таким образом, совершенно подорвано. Более того, постепенно стало все более и более ясным, что подлинным предметом чистой математики является вывод теорем из постулированных допущений и что вопрос о том, являются ли аксиомы, принятые математиком для той или иной цели, в самом деле истинными, есть совсем не его забота. Наконец, плодотворные модификации ортодоксальной геометрической аксиоматики привели к пересмотру и уточнению аксиоматической базы многих других математических дисциплин.

На аксиоматической основе были полностью перестроены и такие области науки, которые до тех пор строились лишь более или менее интуитивным образом. Например, так строилась обычная арифметика натуральных чисел, до тех пор пока в 1899 г. итальянский математик Дж. Пеано, исходивший из несколько более ранней аксиоматики немецкого математика Р. Дедекинда, не аксиоматизировал ее.

Из всех критических работ по основаниям математики в конечном счете вытекает, что привычная трактовка математики как некоей науки «о числах» только способна вводить в заблуждение и никоим образом не соответствует подлинной сути дела. Ведь стало совершенно очевидным, что математика есть попросту наука, изучающая получение логических следствий из некоторых заданных аксиом, или постулатов. Фактически стало общепризнанным то обстоятельство, что математические выводы и заключения не имеют никакого другого смысла, помимо того в некотором роде специального смысла, который связан с терминами или выражениями, входящими в постулаты. Таким образом, математика оказалась даже еще значительно более абстрактной и формальной наукой, чем это было принято считать: более абстрактной — поскольку математические предложения в принципе могут быть истолкованы скорее как утверждения о чем угодно, а не как утверждения, относящиеся к некоторым фиксированным множествам предметов и неотъемлемым свойствам этих предметов; более формальной — поскольку правильность математических доказательств гарантируется чисто формальной структурой некоторых предложений, а отнюдь не содержанием этих предложений.

Постулаты любого раздела математики говорят вовсе не о специфических свойствах пространства, углов, точек, чисел, множеств и т. п., причем никакое специальное значение, которое можно связать с терминами (или «описательными предикатами»), фигурирующими в постулатах, решительно не играет роли в процессе доказательства теории. Повторяем: единственный вопрос, встающий перед чистым математиком (в отличие от естествоиспытателя, применяющего математику для решения конкретных задач), состоит вовсе не в том, истинны ли принятые им постулаты и полученные из постулатов следствия, а в том, действительно ли являются полученные им заключения логически необходимыми следствиями из начальных допущений.

Как показал еще Давид Гильберт (1899), обычные значения, приписываемые первоначальным терминам, можно полностью игнорировать, и единственные «значения», которые следует с ними связывать, сводятся к тому, что о них сказано в аксиомах, описывающих свойства обозначаемых ими понятий.

Можно сказать, что первоначальные термины «неявно» определены аксиомами и что все, что не покрывается этими неявными определениями, не играет никакой роли в доказательствах теорем.

Именно этот факт отражен в знаменитом афоризме Бертрана Рассела: «Чистая математика — это такой предмет, где мы не знаем, о чем мы говорим, и не знаем, истинно ли то, что мы говорим».

В область чистой абстракции, очищенную от каких было ни было привычных ассоциаций, войти, конечно, не так-то легко. Но наградой нам служит свобода и непредвзятость мышления. Последовательная формализация математики освобождает наш разум от ограничений, которые привычная интерпретация математических выражений накладывает на вновь вводимые системы постулатов. Так возникли совершенно новые типы «алгебр» и «геометрий», весьма значительно отклоняющиеся от математических традиций. Поскольку значения некоторых терминов стали гораздо более общими, обозначаемые этими терминами понятия стали употребляться в более широком смысле, а выводы, делаемые с помощью этих понятий, оказались подверженными меньшим ограничениям. Плодом формализации явились разнообразные системы, представляющие большой математический интерес и ценность.

Следует отметить, что некоторые из этих систем не допускают столь очевидных интуитивных (т. е. согласующихся с обыденным словоупотреблением) интерпретаций, как, например, евклидова геометрия или арифметика, но это обстоятельство отнюдь не должно внушать тревогу. Ведь интуиция — штука довольно- таки растяжимая. Нашим детям, возможно, нетрудно будет принять в качестве интуитивно очевидных истин некоторые парадоксальные утверждения теории относительности, не смущают же нас некоторые идеи, отнюдь не казавшиеся интуитивно очевидными нашим предкам. Интуиция — не слишком-то надежный руководитель; во всяком случае ее нельзя считать удовлетворительным критерием для оценки истинности и плодотворности научных открытий.

Однако усугубившаяся абстрактность математики породила и более серьезную проблему: для каждой данной системы постулатов встает вопрос, является ли она внутренне непротиворечивой, т. е. не может ли оказаться, что из этой системы выводятся теоремы, противоречащие друг другу. Проблема не представляется очень уж актуальной, если речь идет об аксиомах, описывающих некоторую определенную и хорошо известную область объектов; если данные аксиомы действительно верны для данной области объектов, вполне естественно считать систему непротиворечивой. Коль скоро, например, предполагалось, что аксиомы Евклида являются истинными утверждениями о пространстве (или о пространственных объектах), то никакой математик до середины XIX столетия не стал бы просто и рассматривать всерьез вопрос о том, нельзя ли из этих аксиом получить пару противоречащих друг другу теорем. Такая уверенность в непротиворечивости евклидовой геометрии основывалась на том совершенно разумном принципе, согласно которому логически несовместимые утверждения не могут быть одновременно истинными; таким образом, никакое множество истинных утверждений (а именно это предполагалось относительно аксиом Евклида) не должно быть внутренне непротиворечивым.

Известны различные виды неевклидовых геометрий. Вначале системы аксиом для таких геометрий рассматривались как безусловно ложные по отношению к окружающему нас пространству, да и вопрос об их истинности относительно какой бы то ни было другой области казался весьма сомнительным. В связи с этим и проблема доказательства внутренней непротиворечивости неевклидовых систем казалась весьма трудной, если вообще осуществимой. Скажем, в геометрии Римана евклидов постулат параллельности заменяется соглашением, согласно которому через произвольную точку, не лежащую на данной прямой, нельзя провести ни одной прямой, параллельной данной.

В таком случае возникает вопрос: а совместима ли система римановских постулатов? Кажется совершенно ясным, что пространству, данному нам в нашем повседневном опыте, система эта не соответствует. Каким же образом можно было бы тогда все-таки рассчитывать установить непротиворечивость этой системы? Как доказать, что в такой системе не могут быть доказаны две противоречащие друг другу теоремы?

Для решения проблемы был предложен один общий метод. Основная идея его состоит в том, чтобы найти «модель» (или «интерпретацию») для абстрактных постулатов рассматриваемой системы, т. е. чтобы каждый постулат оказался истинным утверждением об объектах такой модели, что и свидетельствовало бы о непротиворечивости (совместимости) системы абстрактных постулатов. Рассмотрим, например, следующую систему постулатов, в формулировки которых входят два класса K и L, подлинная «природа» которых остается неопределенной, если не считать того, что сами постулаты «неявно» определяют эти классы.

1. Любые два (различных) члена класса K принадлежат в точности одному члену класса L.

2. Ни один член класса K не принадлежит более чем двум (различным) членам класса L.

3. Не все члены класса K принадлежат одному и тому же члену класса L.

4. Любым двум членам класса L принадлежит в точности один общий для них член класса K.

5. Ни одному члену класса L не принадлежит более чем два элемента класса K.

Из этого небольшого перечня постулатов мы можем, пользуясь обычными правилами логического вывода, вывести несколько теорем. Например, можно показать, что K содержит в точности три члена. Но совместима ли данная система постулатов? Нельзя ли из них получить противоречие? Этот вопрос решается (отрицательно) с помощью следующей модели.

Пусть K есть класс точек, членами которого являются вершины некоторого треугольника, a L — класс отрезков прямых, членами которого являются стороны этого же треугольника. Условимся понимать предложение «член класса K принадлежит члену класса L» как утверждение о том, что данная точка-вершина принадлежит данному отрезку-стороне. При таком понимании каждый из перечисленных пяти постулатов оказывается истинным утверждением. Например, первый постулат утверждает тогда попросту, что любые две точки, являющиеся вершинами некоторого треугольника, принадлежат в точности одному отрезку, служащему стороной этого треугольника. Аналогичным образом мы убеждаемся в истинности остальных постулатов и в совместимости всей данной системы постулатов в целом.

Непротиворечивость геометрии Римана также, оказывается, можно установить при помощи модели, реализующей ее постулаты. Мы можем интерпретировать (истолковать) слово «плоскость», фигурирующее в формулировках римановских аксиом, как поверхность некоторой (евклидовой!) сферы, под «точкой» понимать точку, лежащую на этой сферической поверхности, под «прямой» — дугу большого круга этой поверхности и т. п. Тогда каждый постулат римановской системы оказывается теоремой евклидовой геометрии. Скажем, риманов постулат параллельности при такой интерпретации гласит: «Через точку, лежащую на поверхности сферы, нельзя провести ни одной дуги большого круга этой сферы, которая не пересекала бы произвольной данной окружности большого круга, выбранной на этой поверхности».

Но приведенное рассуждение не является исчерпывающим доказательством непротиворечивости геометрии Римана: ведь оно существенно опирается на допущение о непротиворечивости геометрии Евклида. Так что теперь неизбежно встает вопрос: а действительно ли непротиворечива сама геометрия Евклида?

По давно установившейся традиции на такой вопрос отвечали обычно в том духе, что «аксиомы Евклида истинны, а стало быть, и непротиворечивы». Но такой ответ мы уже не можем более рассматривать как удовлетворительный (мы еще вернемся к этой теме и разъясним подробнее, в чем именно заключается его неудовлетворительность). Другой ответ состоит в том, что евклидовские аксиомы согласуются с фактическими — хотя и ограниченными — данными нашего опыта и наблюдения, относящимися к пространству, и что, принимая эти аксиомы, мы вправе обобщить, экстраполировать наши знания о некоторой ограниченной области. Однако самое большее, на что мы можем рассчитывать, исходя из таких «индуктивных» соображений, — то, что аксиомы «правдоподобны», истинны «с большой вероятностью».

Следующий важный шаг в решении обсуждаемой здесь проблемы непротиворечивости евклидовой геометрии предпринял Гильберт. Основная идея его метода подсказана аналитической геометрией, восходящей еще к Декарту. В предложенной Гильбертом «декартовской» интерпретации евклидовских аксиом они очевидным образом становятся истинными алгебраическими утверждениями. Например, фигурирующее в аксиомах плоской геометрии слово «точка» должно означать теперь пару действительных чисел, «прямая» — числовое соотношение, выражаемое уравнением первой степени с двумя неизвестными, «окружность» — числовое соотношение, выражаемое квадратным уравнением некоторого специального вида, и т. д. Геометрическое предложение, гласящее, что две различные точки однозначным образом определяют некоторую прямую, переходит теперь в истинное утверждение алгебры, согласно которому две различных пары действительных чисел однозначно определяют некоторое линейное уравнение; геометрическая теорема, согласно которой прямая и окружность пересекаются не более чем в двух точках, переходит в алгебраическую теорему о том, что система, состоящая из линейного и квадратного уравнений с двумя неизвестными, имеет самое большее две пары действительных корней, и т. д. Короче говоря, непротиворечивость евклидовских постулатов обосновывается тем обстоятельством, что они выполняются на некоторой алгебраической модели.

Такой метод доказательства непротиворечивости весьма плодотворен и эффективен. Но и при этом остаются высказанные выше возражения. В самом деле, ведь и здесь проблема, поставленная для одной области, лишь переводится в другую область. Гильбертовское доказательство непротиворечивости его системы геометрических постулатов показывает, что если «алгебра» (точнее, арифметика действительных чисел) непротиворечива, то непротиворечива и эта геометрия. Ясно, что доказательство, существенно зависящее от предположения о непротиворечивости некоторой другой системы, не является «абсолютным» доказательством непротиворечивости.

Все попытки решения проблемы непротиворечивости наталкивались на одно и то же затруднение: аксиомы интерпретировались с помощью моделей, содержащих бесконечное множество элементов. Ввиду этого ни одну из таких моделей нельзя было обозреть в конечное число шагов, так что истинность аксиом все еще оставалась под сомнением. Индуктивное рассуждение, обосновывающее истинность евклидовой геометрии, использует лишь конечное число наблюдаемых фактов, согласующихся, по-видимому, с аксиомами. Но заключение, по которому эта согласованность аксиом с наблюдаемыми фактами сохраняет свою силу для всей области и может служить оправданием системы аксиом в целом, само основано на экстраполяции от конечного к бесконечному.

Каким образом можно было бы обосновать законность скачка через пропасть, отделяющую конечное от бесконечного? Следует отметить, что упомянутая трудность уменьшается, — если и не совсем устраняется, — когда удается построить модель, состоящую лишь из конечного числа элементов. Примером такой конечной модели может служить описанная выше модель-треугольник, посредством которой мы установили совместимость постулатов, описывающих классы К и L. В таких случаях сравнительно легко фактически проверить, действительно ли все элементы модели удовлетворяют постулатам, и тем самым убедиться в истинности (а значит, и в совместимости) самих постулатов. Скажем, истинность первого из упомянутых только что постулатов удостоверяется тем фактом, что через каждые две вершины «модельного» треугольника действительно проходит в точности одна его сторона. Поскольку все элементы такой модели и интересующие нас отношения между ними доступны непосредственно и полному обозрению, а опасности двусмысленного истолкования результатов такого исследования практически нет, совместимость системы постулатов не может быть подвергнута хоть сколько-нибудь обоснованному сомнению.

Но, к сожалению, бОльшая часть систем постулатов, используемых в качестве основы существенно важных разделов математики, не может быть интерпретирована с помощью конечных моделей. Поэтому мы явно заходим в тупик. Конечные модели в принципе достаточны для установления совместимости некоторых систем постулатов; но эти системы имеют для математики второстепенное значение. Бесконечные же модели, необходимые для интерпретации большей части важных для математики систем постулатов, мы умеем описывать лишь в самых общих словах и не можем дать никакой твердой гарантии, что такие описания сами свободны от скрытых противоречий.

Конечно, хотелось бы быть уверенными в непротиворечивости формулировок, описывающих бесконечные модели, но таких, что все используемые ими основные понятия представляются совершенно «ясными» и «отчетливыми». Но история науки не может похвастаться тем, что ей везло на доктрины, оперирующие исключительно ясными и отчетливыми идеями и покоящиеся на твердой интуитивной основе, а именно на них и приходится делать весь расчет. В некоторых областях математики, для которых существенную роль играют различные допущения о бесконечных совокупностях, были обнаружены весьма серьезные противоречия, и это несмотря на интуитивную ясность понятий, используемых при этом, и кажущуюся корректность применяемых в данных теориях умственных конструкций. Такие противоречия (именуемые обычно «антиномиями») были обнаружены, в частности, в построенной Георгом Кантором в конце XIX в. теории бесконечных множеств; противоречия эти показали, что кажущаяся ясность даже такого элементарного понятия, как понятие множества (класса, совокупности), не может обеспечить непротиворечивости ни одной конкретной системы, в которой используется такое понятие. Поскольку же математическая теория множеств, в которой рассматриваются свойства совокупностей элементов, часто провозглашается основой для остальных разделов математики (в частности, элементарной арифметики), естественно спросить, не проникают ли противоречия, подобные тем, что были обнаружены в формулировке теории бесконечных множеств, и в другие математические дисциплины.

И в подтверждение такого подозрения Бертран Рассел построил противоречие, оставаясь исключительно в рамках элементарной логики, — противоречие, в точности подобное тому, что было обнаружено первоначально в канторовской теории бесконечных классов (множеств). Антиномию Рассела можно описать следующим образом. Будем различать классы в зависимости от того, являются ли они своими собственными элементами или нет. Назовем класс «нормальным» в том и только в том случае, когда он не содержит самого себя в качестве элемента; в противном же случае будем называть класс «ненормальным». Примером нормального класса может служить класс всех математиков — ведь сам такой класс не является, очевидно, математиком и не является потому своим собственным элементом. Примером ненормального класса является класс всех мыслимых вещей; сам этот класс является, очевидно, «мыслимой вещью», а тем самым — и своим собственным элементом.

Определим теперь класс N — класс всех нормальных классов. Является ли N нормальным классом? Если N нормален, то он является своим собственным элементом (ведь, по определению, N содержит все нормальные классы). Но в таком случае N ненормален, так как в силу данного выше определения класс, содержащий самого себя в качестве элемента, является ненормальным. С другой стороны, если N — ненормальный класс, то он (в силу определения понятия ненормальности) является своим собственным элементом; но в таком случае N нормален, так как выше определено, что элементами N являются лишь нормальные классы. Короче говоря, N нормален тогда и только тогда, когда N ненормален. Отсюда следует, что утверждение «N — нормальный класс» является в одно и то же время истинным и ложным. Это противоречие неминуемо следует из некритического, безоговорочного употребления представляющегося столь ясным понятия класса (множества). Впоследствии были обнаружены и другие парадоксы, причем каждый из них строился с помощью хорошо известных и вроде бы бесспорных приемов рассуждения. Математикам пришлось прийти к выводу, что при построении претендующих на непротиворечивость систем общеизвестность и интуитивная ясность идей являются далеко не надежной основой.

Мы убедились в важности проблемы непротиворечивости (совместимости) и ознакомились с классическим, «стандартным», методом ее решения с помощью моделей. Мы видели, что проблема эта обычно требует использования бесконечных моделей, описание которых, однако, само чревато внутренними противоречиями. Нам придется согласиться поэтому, что метод моделей имеет ограниченную ценность в качестве орудия решения проблемы и недостаточен для получения окончательного ответа на нее.