Решения
8.1. В 100 г 20-процентного раствора жидкости содержится 20 г самой жидкости и 80 г растворителя. Именно в таких количествах и нужно смешать жидкость с ее растворителем.
8.2. Пусть мы смешиваем x г раствора 50-процентной и y г раствора 70-процентной кислоты. Тогда в первом 50 растворе содержится чистой кислоты
откуда имеем 5y = 15х и находим искомое отношение x:y = 5:15 = 1:3. Это означает, что смешивать надо 1 часть первого раствора с 3 частями второго.
8.3. Пусть требуется смешать растворы a-процентной и b-процентной кислоты, чтобы получить c-процентный раствор. Без ограничения общности можно считать, что a<b (иначе поменяем местами в тексте первый и второй растворы), причем a≤c≤b: если c<a или c>b, то c-процентный раствор, конечно, получить нельзя. Рассуждая, как и при решении задачи 8.2, получаем, что если берется x частей первого раствора и y частей второго, то должно быть выполнено равенство
откуда вытекает соотношение (b - с)y = (c - a)x, т. е. x:y = (b - c):(c - a). Такой же вывод дает описанная в условии задачи схема
Таким образом, использование схемы вполне обосновано.
8.4. Пользуясь старинным способом, приведенным в задаче 8.3, получаем схему
Отсюда делаем вывод, что золото 375-й пробы и 750-й пробы нужно сплавлять в отношении 250:125 = 2:1.
8.5. Столовый уксус из эссенции можно получить, разбавив ее водой, т. е. 0-процентным "уксусом". Применяя старинный способ (см. задачу 8.3), имеем схему
из которой получаем, что 9 частей эссенции нужно разбавить 71 частью воды, т. е. к 90 г эссенции следует добавить
8.6. Если обозначить через а содержание соли в морской воде и воспользоваться старинным способом, то получится схема
Таким образом, пресную и морскую воду нужно смешивать в отношении 3a/5:2a/8 = 3:2, а, значит, к 4 кг морской воды нужно добавить 6 кг пресной.
8.7. Если использовать старинный способ, то получится схема
Следовательно, грузинский чай с индийским надо смешивать в отношении
8.8. Пусть из 24 т руды выплавлено x т металла. Тогда количество тонн чистого металла (без каких бы то ни было примесей вообще) должно быть равно, с одной стороны, 0,6*24, а с другой - 0,96 х. Поэтому справедливо равенство
откуда получаем
8.9. Вначале сухое вещество (мякоть) арбуза составляла 1% массы, а после усыхания 2%. Это означает, что доля сухого вещества в арбузе удвоилась, следовательно, вдвое уменьшил свою массу и сам арбуз.
8.10. Обозначим через x искомое количество раз, в которое усыхают грибы. Тогда из а кг свежих грибов получается
откуда (x - 9)(x - 1) = 0, т. е. x = 9 (значение x = 1 не подходит к условию задачи, ибо оно не задает никакого усыхания).
8.11. Для получения раствора наибольшей концентрации нужно смешать наиболее концентрированные растворы кислоты, а именно: 100 г 70-процентной, 100 г 60-процентной, и 50 г 30-процентной. В 250 г полученного раствора будет содержаться 70 + 60 + 15 = 145 г чистой кислоты, что составляет
Пусть мы смешали x г первого раствора, y г второго и z г третьего. Тогда 250 г 55-процентного раствора могло получиться только в случае выполнения равенств
Выписанная система имеет бесконечно много решений, удовлетворяющих неравенствам 0≤y≤100, 0≤z≤100, 0≤x≤100. Действительно, после несложных преобразований этой системы имеем равносильную систему
в которой величину z можно считать параметром, удовлетворяющим неравенствам
8.12. По закону Архимеда сплав при погружении в воду потерял в весе столько, сколько весит вытесненная им вода, т. е. 900 г. Следовательно, объем сплава равен 900 см3, а плотность равна
из которой следует, что объемы золота и серебра в сплаве находятся в отношении 4,4:4,4, а значит, просто равны друг другу.
Заметим, что здесь мы применили старинный способ в несколько необычной ситуации: количества смешиваемых веществ измеряются их объемами, а роль концентрации играет плотность. Убедитесь сами, что схема по-прежнему применима.
8.13. Так как в результате переливаний объемы содержимого в обоих стаканах не изменились, то в первом стакане убавилось ровно столько кофе, сколько прибавилось молока. Следовательно, в итоге из первого стакана во второй перекочевало столько же кофе, сколько молока перекочевало из второго стакана в первый.
8.14. Количество черного кофе с самого начала было равно 1 стакану, а молока было долито сначала полстакана, затем треть стакана и, наконец, шестая часть стакана, т. е. в общей сложности
8.15. Докажем, что независимо от произведенных переливаний в первом стакане кофе будет не меньше, чем молока. Действительно, в самом начале в первом стакане был только кофе, т. е. сформулированное утверждение справедливо. Теперь, если перед каким-то переливанием в первом стакане кофе было не меньше, чем молока, то возможны два варианта:
а) жидкость переливается из первого стакана во второй, и тогда, конечно, в первом стакане кофе останется не меньше, чем молока;
б) жидкость переливается из второго стакана в первый, а тогда перед переливанием во втором стакане кофе было не больше, чем молока (ведь общее количество кофе равно общему количеству молока), что сохранится и после переливания, а, значит, в первом стакане кофе снова станет не меньше, чем молока.
Таким образом, в любом случае, после любого количества переливаний в первом стакане молока не может оказаться больше, чем кофе.
8.16. Предположим, что на стенках колбы всегда остается одно и то же количество жидкости, равное а. Тогда если влить в колбу сразу всю воду в количестве b, то концентрация реактива в полученной от перемешивания смеси будет равна
Это меньше, чем в первом из рассмотренных случаев, поскольку
Итак, выгоднее полоскать два раза меньшим количеством воды, чем один раз большим.
8.17. После первого разбавления из кастрюли будет отлит 1 л сиропа, а его концентрация станет равна 0,9.
После второго разбавления из кастрюли будет отлита десятая часть оставшегося сиропа, концентрация которого станет равна 0,92. Вообще, после очередного n-го разбавления опять будет отлита десятая часть сиропа, а его концентрация станет равна 0,9n. Ни при каком натуральном значении n не будет выполнено равенство
так как иначе при том же значении n было бы справедливо и равенство
в котором левая часть кратна 3, а правая нет. Заметим, однако, что хотя точное равенство невозможно, но тем не менее после достаточно большого количества переливаний сироп обязательно окажется разбавленным по меньшей мере в два раза. В данном случае этот момент впервые наступит после седьмого разбавления, поскольку справедливы оценки
8.18. Если баллон с давлением p1 подсоединить к баллону с давлением p2, то в обоих баллонах давление станет равным
Если затем первый баллон подсоединить к баллону с давлением p3, то в них обоих давление станет равным
Продолжая это рассуждение и далее, мы получим, что если затем последовательно подсоединить первый баллон к баллонам с давлением p4, p5, ..., pn, то в итоге давление в первом баллоне станет равным
Анализируя эту сумму, можно заметить, что наибольший вклад в нее дает величина pn, которая входит в сумму с наибольшим коэффициентом 1/2. Поэтому для того, чтобы эта сумма была максимальна, нужно, чтобы давление pn было наибольшим из давлений всех баллонов. Действительно, если, напротив, наибольшее давление p отсутствует в списке p2, p3, ..., pn, то заменим pn числом р, отчего сумма увеличится на
Итак, в любом случае, если pn<p, то итоговое давление можно увеличить. Аналогично получаем, что давление pn-1 должно быть наибольшим из оставшихся давлений и т. д. Вообще, давления p2, p3, ..., pn должны образовывать возрастающую последовательность наибольших из имеющихся давлений. Кроме того, каждый баллон должен однажды быть подсоединенным к первому баллону. В самом деле, если, например, давление p не участвует в указанной выше сумме, то эту сумму можно еще увеличить на
заменив слагаемое
Таким образом, наибольшее значение давления в первом баллоне можно получить, подсоединив его поочередно к каждому баллону в возрастающей последовательности их давлений.
Можно доказать, что большего давления по сравнению с давлением, полученным указанным способом, нельзя достичь, даже если разрешить соединять сразу несколько любых баллонов и использовать их более чем по одному разу.