Мнимая карусель

(Таня — Нулику)

Вот тебе, Нулик, наши последние новости.

По дороге к аттракциону всё чаще мелькали рекламные плакаты:

ПЕРВАЯ В МИРЕ МНИМАЯ КАРУСЕЛЬ!

Исключительно для мнимых единиц!

Единственное место, где мнимые единицы могут стать действительными!

Мнимые Единицы, кружитесь на здоровье!

Наша симпатичная подружка щебетала без умолку и рассказала кучу интересного.

Оказывается, Мнимая Единица — это просто-напросто корень квадратный из отрицательной единицы:

— А разве из минус единицы нельзя извлечь корень? — спросил Сева. — Ведь корень квадратный из единицы всегда равен единице.

— Ой-ой-ой! — ужаснулась Мнимая Единичка. — Это касается только положительной единицы. Ведь что значит извлечь корень квадратный, скажем, из девяти?

— Это значит найти такое число, которое при возведении в квадрат равнялось бы девяти, — ответил Олег. — Это число три.

— Верно. А теперь попробуйте найти число, которое при возведении в квадрат даёт минус единицу! — Мнимая Единичка тоненько засмеялась.

Сева озадаченно взъерошил волосы:

— М-да! Такого числа нет. Какое число ни возводи в квадрат, положительное или отрицательное, ответ всё равно получится положительный. Уж я-то знаю!

— Вот видите. Потому-то корень квадратный из минус единицы называется мнимой единицей.

— Выходит, мнимые единицы совсем особые числа. Наверное, и дорога у вас устроена как-нибудь особенно?

— Ничуть. Наша дорога очень похожа на ту, где живут действительные числа, только расположена она под прямым углом к ней. Это такая же бесконечная прямая, в центре которой находится всё та же Нулевая станция.

— Раз у вас есть Нулевая станция, значит, есть положительные и отрицательные числа?

— Что вы! Разве мнимые числа могут быть положительными и отрицательными? Просто на нашей дороге, так же как и на дороге действительных чисел, есть два направления от нуля. Одно из них условились обозначать знаком плюс, другое — знаком минус.

— Но как же мнимые числа отличают от действительных?

— С помощью буквы i:

2i, 5i, ?8i, ?12i.

— Вот как! У вас, как и у других букв в Аль-Джебре, тоже есть коэффициенты?

— Конечно.

— А где же ваш коэффициент? — ляпнул Сева.

И когда только он научится вести себя в обществе? Хорошо ещё, воспитанная Единичка сделала вид, что не заметила его бестактности.

— Мой коэффициент — единица, и он, как всегда, невидимка.

Но Сева уже закусил удила. Ужасный он спорщик!

— Вот вы говорите, что мнимая монорельсовая дорога похожа на действительную. Значит, и правила движения на ней те же. Так ведь? Тогда при чём здесь карусель? Ведь на обычной монорельсовой дороге движение идёт по прямой, а карусель-то кружится?

— Вы отчасти правы, — ответила Мнимая Единичка. — Правила движения у нас более разнообразны. При сложении и вычитании вагончики на мнимой дороге движутся по прямой и по тем же правилам, что и действительные числа:

2i+Зi=5i;

8i?15i= ?7i,

или вот еще ну и конечно:

5i?5i=0,

Мнимые Единички с разными знаками и одинаковыми коэффициентами взаимоуничтожаются на Нулевой станции.

Иное дело — умножение, деление, возведение в степень… Тут уж Мнимые Единицы двигаются не только по прямой, но и по кривой. Именно это вы сейчас и увидите.

Мы вошли в круглый павильон. Там было полным-полно Мнимых Единиц. Все они с нетерпением ждали своей очереди покружиться.

Павильон очень похож на цирк. Места расположены амфитеатром. В центре — арена, её под прямым углом друг к другу пересекают две перекладины. Одна перекладина изображает монорельсовую дорогу действительных чисел. На концах её укреплены таблички

Другая перекладина изображает дорогу мнимых чисел. Здесь на концах находятся таблички

На пересечении дорог, в центре арены, — Нулевая станция. Здесь укреплена вращающаяся ось, и на неё (совсем как патефонная пластинка) надет прозрачный пластмассовый круг.

Когда мы вошли, карусель только что остановилась. С неё легко соскочила Мнимая Единица с зелёным зонтиком. Вместо неё на круг против таблички

стала Мнимая Единица с жёлтым зонтиком.

Наша спутница подошла к микрофону и скомандовала:

— К возведению в степень приготовиться!

Прозвенел звонок, и под звуки плавного вальса круг тронулся. Только не по часовой стрелке, а в обратную сторону. И тут-то начались необыкновенные вещи!

Мнимая Единица с жёлтым зонтиком пересекла дорогу действительных чисел у таблички

и превратилась в действительное число — Отрицательную Единицу. Возле таблички

она снова стала Мни

мой Единицей, но уже со знаком минус. Вот она снова пересекла действительную дорогу, поравнялась с табличкой

и — невероятно! — опять превратилась из Мнимой Единицы в Действительную, да ещё положительную. А потом как ни в чём не бывало возвратилась к табличке

Тут она снова стала Мнимой.

Оркестр заиграл песню «Каким ты был, таким остался!», и всё началось сначала. Карусель кружилась, а Мнимая Единица всё превращалась и превращалась.

— Не понимаю, — сказал Сева. — Мнимая Единица превращается в Действительную, Действительная — опять в Мнимую… Как это?

— На то и возведение в степень! — отозвалась Мнимая Единичка. — Ведь Мнимая Единица равняется корню квадратному из минус единицы:

Но если возвести в квадрат корень квадратный из любого числа, что получится?

— Подкоренной число, — ответил Олег.

— Так это же мы недавно видели! — вспомнил Сева. — Один карликан целый час возводил в квадрат то корень квадратный из трёх, то корень квадратный из двух… И каждый раз получалось число, стоящее под радикалом.

— То же самое происходит и с Мнимой Единицей:

— Ну, это понятно. А как же действительное число — минус единица — превращается в мнимое?

— При этом Мнимая Единица, возводится уже не в квадрат, а в куб, то есть в третью степень:

А это ведь всё равно что умножить минус единицу на i:

— Теперь, — сказал Олег, — нетрудно понять, как Мнимая Единица с минусом

превращается в Действительную Единицу со знаком плюс

Она возводится в четвёртую степень:

А это можно представить себе и так:

?1 ? ?1 = +1.

— Прекрасно! — воскликнула Мнимая Единичка. — Остаётся выяснить, как Действительная Единица снова становится Мнимой.

В самом деле, как? Тут даже Олег ни до чего не додумался. Но оказалось, что для этого Мнимую Единицу надо возвести в пятую степень.

— Не может быть! i5 равно i?! — растерялись мы. — Как же так? Что же это такое?

— Да ничего особенного: i4=1.

Чтобы получить i5, умножим единицу на i. А это ведь всё равно что i, взятое один раз, то есть просто i:

1·i=i.

— Вот так история! Мнимую Единицу нельзя возвести более чем в четвёртую степень? — удивился Олег.

— Отчего же! — возразила Мнимая Единичка. — Возводите себе на здоровье и в шестую, и в седьмую, и в сто двадцать первую… Словом, в любую целую степень. Но ничего, кроме того, что уже было, не получится. На то и карусель!

Тут Севе срочно понадобилось выяснить, чему равняется i17.

— Ну, это совсем нетрудно, i в пятой равно i, — сказала Мнимая Единичка. — Значит, i в девятой тоже равно i…

— Понимаю! — перебил Сева. — Каждый раз надо прибавлять к показателю степени четыре: i13 равно i, значит, i17 тоже равно i.

Вот, Нулик, хорошая задача для твоих учеников. Попробуйте вычислить, чему равно i24. А чтобы вам легче было, загляните в чертёж мнимой карусели.

Долго ещё любовались мы превращениями Мнимых Единиц, а когда уже собрались уходить, Сева хлопнул себя по лбу:

— Чуть не забыл спросить! Вы сказали, что при возведении в степень Мнимые Единицы движутся по кривой. А ведь здесь они движутся по окружности!

— Окружность тоже кривая, но такая, где все точки находятся на одинаковом расстоянии от центра. При умножении и возведении в степень перемещаются по окружности только Мнимые Единицы.

— А как движутся другие мнимые числа при возведении в степень? — спросил Олег. — Два i три i, четыре i?

— На нашей карусели вы этого не увидите, — сказала Мнимая Единичка. — Да оно и к лучшему. Нельзя же всё сразу…

— Всякому овощу своё время? — подмигнул Сева.

— Пожалуй, — улыбнулась Мнимая Единичка.

Мы поблагодарили её и распрощались. Но тут пришла очередь Олегу лопать себя по лбу.

— Извините, пожалуйста, — сказал он, обернувшись, — а зачем вообще нужны мнимые числа?

— Это вы поймёте, когда начнёте решать уравнения второй и третьей степени. Там в ответе часто получаются мнимые числа.

— На что нужны уравнения с мнимыми ответами? — буркнул Сева.

— Спросите об этом у физиков, химиков, инженеров, астрономов… Мнимые числа помогают им решать вовсе не мнимые, а действительно важные практические задачи.

— Но почему же тогда вас называют мнимыми?

— По привычке, — грустно ответила буковка i. — Так нас окрестил французский учёный Рене Декарт. Это было в семнадцатом веке, когда мнимые числа ни во что не ставились. Но с тех пор многое переменилось. Если бы Декарт жил в наши дни, он непременно придумал бы для нас более подходящее название.

— Например, необходимые числа, — сказал Олег.

— О! Это было бы чудесно! — вздохнула Мнимая Единичка.

Мы ещё раз попрощались и ушли. На этот раз совсем.

Таня.