17 Математика будущего

Небо над Цюрихом затянуто тучами, и дождь шумит по крышам. Какая ужасная погода в середине лета! Поезд не должен сильно задерживаться.

Воскресенье, 8 августа 1897 г. На платформе железнодорожной станции стоит задумчивый человек в ожидании своих гостей. Это математик Адольф Гурвиц. Немец по происхождению, он уже пять лет живет в Цюрихе, где работает на кафедре математики в Швейцарской высшей технической школе. Он сыграет важную роль в организации профессионального мероприятия, которое будет происходить в следующие три дня. На прибывающем поезде едут величайшие ученые из шестнадцати различных стран мира. Уже завтра откроется первый Международный конгресс математиков.

Двое организаторов этой конференции – немцы Георг Кантор и Феликс Клейн. Первый из них получил известность, обнаружив, что существуют бесконечности, большие, чем другие, и разработав теорию множеств, избежав при этом парадоксов. Второй математик был специалистом в области алгебраических структур. Хотя по дипломатическим соображениям Швейцария была выбрана в качестве принимающей страны первого съезда, можно догадаться, что инициатива исходила из Германии. В XIX в. этой стране удалось стать новым Эльдорадо математики, а Гёттингену и его престижному университету – нервным центром сосредоточения самых ярких математических умов.

Среди двухсот участников конференции было много представителей из разных стран: Италии, например Джузеппе Пеано, автор стандартной аксиоматизации натуральной арифметики; России, например Андрей Марков, чьи работы произвели революцию в исследовании теории вероятностей; Франции, например Анри Пуанкаре,[22] в частности открывший теорию хаоса, то, что мы впоследствии назовем эффектом бабочки. В течение трех дней съезда все эти люди имели возможность дискутировать, делиться мнениями, налаживать связи между собой и изучаемыми научно-исследовательскими областями.

В конце XIX в. математический мир претерпел изменения. Расширение, не только географическое, но и интеллектуальное, связывало ученых, находящихся в различных уголках планеты. Математика стала слишком широкой дисциплиной для того, чтобы один человек мог охватить ее в полной мере. Анри Пуанкаре, выступавшего со вступительным словом на конференции, иногда называют последним великим универсальным ученым, освоившим все направления математики своего времени и достигшим значительных успехов в каждом из них. С его уходом завершилась эпоха математиков-универсалов и началось время узкопрофильных специалистов.

Тем не менее в ответ на неизбежный дрейф математических материков ученые стали сотрудничать больше, чем когда-либо, и получили больше возможностей для совместной работы, которая станет единой и неделимой. Так, в XX в. математика находится под влиянием двух противоположных процессов.

Второй Международный конгресс математиков проводился в Париже в августе 1900 г. Впоследствии данное мероприятие стали проводить каждые четыре года, за исключением нескольких лет, когда конгресс не созывали из-за мировых войн. Последний из них состоялся в Сеуле с 13 по 21 августа 2014 г. На нем присутствовало более 5000 участников из 120 стран мира – исторический максимум за все время проведения этих конференций. Следующий конгресс состоится в Рио-де-Жанейро в августе 2018 г.

За долгие годы проведения таких встреч сформировались некоторые традиции конгресса. Так, с 1936 г. на конгрессе вручается престижная Филдсовская медаль. Эта награда, которую часто называют Нобелевской премией по математике, является высшим достижением в данной дисциплине. На лицевой стороне медали изображен портрет Архимеда, обрамленный цитатой древнегреческого математика Transire suum pectus mundoque potiri (с лат. «превзойти свою человеческую ограниченность и покорить Вселенную»).

Профиль Архимеда на Филдсовской медали

Одним из результатов глобализации математики стало также использование английского как международного языка дисциплины. Следует отметить, что со времен Парижского конгресса многие участники жаловались на то, что лекции и доклады, представленные только во французском языке, сложно понять иностранным делегатам. Вторая мировая война и эмиграция значительной части интеллектуальной элиты Европы в США, где ученые продолжили работать в крупных университетах, во многом способствовали этому процессу. Сегодня подавляющее большинство математических научных статей написано и опубликовано на английском языке.[23]

За последние сто лет количество математиков также значительно увеличилось. В 1900 г. их было всего несколько сотен и работали они главным образом в Европе. Сегодня по всей планете рассеяны десятки тысяч математиков. Каждый день публикуются десятки новых статей. По некоторым оценкам, в настоящее время мировое математическое сообщество производит около миллиона новых теорем каждые четыре года!

Унификация математики также привела к значительной реорганизации самой дисциплины. Одним из самых активных участников этого движения стал немецкий математик, профессор Геттингенского университета Давид Гильберт; как и Пуанкаре, он известен как один из самых ярких и влиятельных математиков начала XX в.

В 1900 г. Гильберт участвовал в Парижском конгрессе и в среду 8 августа выступил в Сорбонне с речью, которая осталась в истории. Немецкий математик представил список основных нерешенных вопросов, которые, по его мнению, должны были стать вектором развития математики будущего столетия. Математики любят вызовы, и здесь он попал в цель. Двадцать три проблемы Гильберта вдохновили ученых на исследования, и уже совсем скоро на них начали давать ответы, в том числе ряд математиков, присутствовавших в тот день в зале на конгрессе.

К 2016 г. четыре из этих проблем все еще остаются без ответа. Среди них восьмая из списка Гильберта проблема, так называемая гипотеза Римана, которая считается величайшей математической гипотезой нашего времени. Смысл этой проблемы заключается в поиске мнимых решений уравнения, сформулированного в середине XIX в. немецким ученым Бернхардом Риманом. Это уравнение особенно интересно еще и потому, что содержит в себе ключ к гораздо более древней тайне: последовательности простых чисел, изучаемых со времен эпохи Античности.[24] Эратосфен был одним из первых, кто изучил эту последовательность чисел в III в. до н. э. Найдя решения уравнения Римана, вы, таким образом, получите массу информации о числах, которые занимают центральное место в арифметике.

Обозначив двадцать три проблемы математики, Гильберт не остановился на достигнутом. В последующие годы немецкий математик стремился создать для математики прочный, устойчивый и надежный фундамент, на котором могли бы базироваться все ее направления. Его целью была разработка уникальной теории, охватывающей все отрасли математики. Как вы помните, начиная с Декарта и описанной им системы координат геометрические задачи могут быть выражены на языке алгебры. Геометрия в какой-то степени становится подразделом алгебры. Но можно ли объединить две дисциплины в масштабах всей науки? Другими словами, можно ли создать такую супертеорию, которая объединила бы все ветви математики, для которой геометрия, теория вероятностей, алгебра или исчисление бесконечно малых величин будут всего лишь частными случаями?

Эта супертеория создана на основе теории множеств, сформулированной в конце XIX в. Георгом Кантором. Несколько предложений аксиоматизации этой теории были выдвинуты в начале XX в. В период с 1910 по 1913 г. британские математики Альфред Норт Уайтхед и Бертран Рассел опубликовали трехтомный труд под названием Principia Mathematica (с лат. – «Принципы математики»). В этой работе содержались аксиомы и логические правила, исходя из которых математика была воссоздана с нуля. Один из самых известных отрывков этой работы находится на триста шестьдесят второй странице первого тома, где Уайтхед и Рассел, воссоздавая арифметику, наконец дошли до доказательства теоремы 1 + 1 = 2! Это очень забавляло авторов, так как требовалось исписать так много страниц с использованием рассуждений, которые могут поставить в тупик неискушенных математиков, чтобы доказать простейшее равенство. Ради вашего интереса ниже приводится доказательство 1 + 1 = 2 на языке символов Уайтхеда и Рассела:

Не пытайтесь разобраться в этой последовательности символов, так как это абсолютно невозможно, не прочитав предыдущие 361 страницу![25]

После Уайтхеда и Рассела были сделаны и другие предложения по совершенствованию аксиом, и современная математика в значительной степени основывается на нескольких базовых аксиомах из теории множеств.

Всеобщая унификация также вызвала лингвистическую дискуссию, поскольку некоторые математики начали в это время говорить о необходимости использования единственного числа для определения дисциплины.[26] Даже сегодня встречаются еще много математиков, стремящихся навязать использование термина в единственном числе, но привычка уже глубоко засела в подсознании людей, и на текущий момент большинство склоняется к использованию формы множественного числа.

Несмотря на огромный успех теории множеств, Гильберт не был полностью удовлетворен результатом, и у него все еще оставались некоторые сомнения в достоверности аксиом, изложенных в «Принципах математики». Для того чтобы теорию можно было считать совершенной, она должна отвечать двум критериям: последовательности и полноты.

Последовательность подразумевает, что в теории не должно быть парадоксов. Не представляется возможным одновременно доказать справедливость утверждения и его противоположности. Если, например, с помощью одной из аксиом можно доказать, что 1 + 1 = 2, а также, что 1 + 1 = 3, теория непоследовательна, потому что она сама себе противоречит. Полнота же говорит о том, что в данной теории достаточно аксиом для того, чтобы иметь возможность доказать все верные в ее контексте утверждения. Если, например, в арифметической теории недостаточно аксиом, чтобы доказать, что 2 + 2 = 4, то она считается неполной.

Можно ли доказать, что «Принципы математики» соответствуют этим критериям? Можно ли быть уверенным, что мы никогда не столкнемся с парадоксами и что используемые аксиомы будут достаточно точными и универсальными, чтобы с их помощью выводить все возможные теоремы?

Программа Гильберта столкнулась с серьезной проблемой в 1931 г., когда молодой австрийский математик Курт Гёдель опубликовал свою статью под названием «О неразрешимых теоремах “Принципов математики” и других формальных математических систем» (от нем. ?ber formal unentscheidbare S?tze der Principia mathematica und verwandter Systeme). В этой статье приводилось доказательство того, что невозможно создать такую супертеорию, которая будет одновременно последовательной и полной! Если «Принципы математики» последовательны, то обязательно найдутся неразрешимые теоремы, которые нельзя будет ни доказать, ни опровергнуть. Поэтому невозможно определить, являются ли они истинными!

Изысканная катастрофа Гёделя

Теорема Геделя о неполноте является памятником математического мышления. Для того чтобы попытаться понять общий принцип, мы должны рассмотреть более подробно, что же такое математика. Вот два простейших арифметических утверждения:

A. Сумма двух четных чисел всегда будет четной.

B. Сумма двух нечетных чисел всегда будет нечетной.

Эти два утверждения достаточно понятные, и могут быть легко написаны на алгебраическом языке Виета. Немного подумав, вы увидите, что первое из этих утверждений, обозначенное как А, верное, в то время как второе, обозначенное как B, является ложным, так как сумма двух нечетных чисел всегда четная. Что приводит нас к следующим двум новым заявлениям:

С. Утверждение А верно.

Д. Утверждение Б ложно.

Эти два новых утверждения обладают некоторыми особенностями. Это не совсем математические утверждения, а скорее утверждения о математических утверждениях! Утверждения С и D, в отличие от А и В, могут априори не быть написаны на символическом языке Виета. Они не касаются ни чисел, ни геометрических фигур или какого-либо другого объекта арифметики, теории вероятности или исчисления бесконечно малых величин. Это то, что мы называем метаматематическими утверждениями, то есть такими, которые относятся к самой математике, а не к ее объектам изучения! Теорема – это математический объект. Утверждение, что теорема верна, является метаматематическим.

Различие может показаться тонким и незначительным, но только благодаря невероятно изобретательной формализации метаматематики Гёделю удалось доказать свою теорему. Открытие австрийского ученого позволило описать даже метаматематические утверждения на языке математики! Если рассматривать в своих рассуждениях утверждения как числа, предметом математики становятся не только числа, геометрия или теория вероятностей, но и сама математика!

Вещь, которая говорит сама о себе, это вам ничего не напоминает? Помните знаменитый парадокс Эпименида? Греческий поэт однажды сказал, что все критяне – лжецы. Эпименид сам был критянином, поэтому невозможно было определить, истинно или ложно это утверждение – в нем содержалось противоречие. Змея, кусающая себя за хвост. Вплоть до этого дня при формулировании математических утверждений самореферентные утверждения такого рода избегались. Но с помощью своей методики Гёделю удалось воспроизвести аналогичное явление в математике. Посмотрите на следующее утверждение:

G. Утверждение G нельзя доказать с помощью аксиом теории.

Это яркий пример метаматематического утверждения, но благодаря ловкости мысли Гёделя оно может быть выражено на языке математики. Поэтому стало возможным попытаться доказать G на основании аксиом теории. Рассмотрим два случая.

Предположим, что доказать утверждение G возможно; в этом случае оно неверно, то есть ложно, т. к., согласно утверждению G, оно не доказуемо. Если можно доказать ложное утверждение, то делаем вывод, что теория непоследовательна!

Теперь предположим, что доказать утверждение G невозможно. В этом случае утверждение G является истинным, и это означает, что аксиомы теории не в состоянии доказать утверждение, которое, тем не менее, верно! Таким образом, теория является неполной, поскольку есть истины, которые невозможно доказать с ее помощью.

Исходя из этого, в любом случае мы потерпим фиаско. Теория либо непоследовательна, либо неполна. Теорема о неполноте Гёделя определенно разрушила надежды Гильберта. И бесполезно пытаться обойти эту проблему, взяв за основу другую теорию, так как сделанный вывод применим не только к «Принципам математики», но и к любой другой теории, которая придет ей на смену. Уникальная и совершенная теория, с помощью которой можно доказать любую теорему, не может существовать в принципе.

Тем не менее надежда оставалась. Утверждение G, безусловно, неразрешимо, но необходимо признать, что оно не очень интересно с математической точки зрения и было сделано исключительно из стремления Гёделя применить парадокс Эпименида. Так, можно еще было надеяться, что значительные проблемы математики, которые вызывают подлинный интерес, не попадают в ловушку самореференции.

К сожалению, пришлось столкнуться с неизбежным подтверждением еще раз. В 1963 г. американский математик Пол Коэн доказал, что первые двадцать три проблемы Гильберта также принадлежали к этой странной категории неразрешимых утверждений. Невозможно их доказать или опровергнуть с помощью аксиом «Принципов математики». Если удастся найти решение первой проблемы, оно в любом случае будет частью другой теории. Но в этой новой теории, в свою очередь, появятся собственные пробелы и другие неразрешимые утверждения.

Особое место в XX в. занимали исследования не только основ математики, но и других направлений. Сложно описать все разнообразие подразделов математики, которые развивались в последние десятилетия. Остановимся отдельно на одном из самых ярких открытий прошлого века: множестве Мандельброта.

Эта удивительная математическая теория строится на анализе свойств некоторых числовых последовательностей. Выберите любое число, которое вам нравится, а затем составьте последовательность чисел, первый член которой будет равен 0, а каждый последующий будет равен квадрату предыдущего, к которому прибавляется выбранное число. Например, если вы выбираете число 2, то ваш числовой ряд будет начинаться следующим образом: 0, 2, 6, 38, 1446… Вы заметили, что 2 = 02 + 2, 6 = 22 + 2, 38 = 62 + 2, 1446 = 382 + 2 и так далее? Если вместо числа 2 выбрать –1, то вы получите следующую последовательность: 0, –1, 0, –1, 0… В таком ряду чередуются только числа 0 и –1, т. к. –1 = 02 – 1 и 0 = (–1)2 – 1.

Эти два примера показывают, что в зависимости от того, какое число будет выбрано, полученный результат может принимать две совсем разные формы. Значения элементов последовательности могут стремиться к бесконечности, увеличиваясь все больше и больше, как в случае, если выбрать число 2. Также возможно, что последовательность будет ограниченной, то есть ее значения не отклоняются от определенных значений и остаются в ограниченном пространстве, как в случае с числом –1. Все числа, в том числе целые, дробные или даже мнимые, относятся к одной из этих двух категорий.

Эта классификация чисел может показаться довольно абстрактной, поэтому для наглядности лучше представить ее в геометрическом виде с использованием Декартовой системы координат. Поместим все действительные числа на горизонтальной оси, как мы делали ранее,[27] а мнимые числа – на вертикальной оси. Теперь закрасим точки, принадлежащие к двум категориям, разными цветами. Получится вот такая интересная фигура.

На этой схеме черным цветом выделены числа, на основании которых формируются ограниченные последовательности, а серым – числа, на основании которых образуются последовательности с бесконечным количеством элементов. Белый ореол за черной фигурой добавлен для того, чтобы было лучше видно мельчайшие детали даже невооруженным глазом.

Поскольку для каждой точки изображения необходимо было производить соответствующий расчет и анализ числового ряда, создание такой фигуры требовало проведения многочисленных вычислений. Именно поэтому ее удалось изобразить только в начале 1980-х гг., когда компьютеры достигли соответствующего технического уровня. Французский математик Бенуа Мандельброт был одним из первых, кто подробно изучил геометрические свойства этой фигуры, которую коллеги в конечном счете назвали в его честь.

Множество Мандельброта завораживает! Его контур представляет собой невероятное геометрическое кружево гармонии и точности. Если приблизить его границу, то можно разглядеть все больше и больше бесконечно малых и невероятно точных деталей. В самом деле, практически невозможно охватить на одной картинке все разнообразие элементов множества Мандельброта в деталях. Увеличенные участки отдельных элементов этой фигуры изображены на рисунке ниже.

Но еще более любопытной эту фигуру делает то, что она удивительно проста в определении. Если бы для описания ее построения требовалось составить многочисленные сложные уравнения, в которых присутствовали бы запутанные расчеты или необычные конструкции, то можно было бы сказать: «Конечно, эта фигура красивая, но она построена совершенно искусственным образом и потому малоинтересна». Но нет, данная фигура есть не что иное, как геометрическое представление элементарных свойств числовых последовательностей, которые определены несколькими словами. Из одного простого правила рождается такое геометрическое чудо.

Открытие такого рода неизбежно порождает дебаты о природе математики: является ли она человеческим изобретением или существует сама по себе? Математики открывают или создают? На первый взгляд, кажется, что множество Мандельброта можно назвать открытием. Эта фигура принимает такую необыкновенную форму не потому, что Мандельброт решил построить ее таким образом. Французский математик не стремился изобрести такую фигуру. Она появилась не по его воле. Графическое выражение исходной формулы не могло выглядеть иначе.

Тем не менее кажется весьма странным рассматривать возможность существования объекта, который не только является чисто абстрактным, но даже интерес к которому не относится к предмету теории математики. Абстрактные числа, треугольники и уравнения могут иметь прикладное значение для познания реального мира. Абстракция вплоть до этого момента всегда имела хотя бы отдаленное отражение в материальной Вселенной. Множество Мандельброта, кажется, не имеет ничего общего с реальным миром. Никакие физические явления, как известно, не принимают форму, каким-либо образом напоминающую его. Так в чем же смысл его изучения? Можно ли поставить его открытие в один ряд с открытием новой планеты в астрономии или новых видов животных в биологии? Или же это объект, который может изучаться только сам по себе? Другими словами, равна ли математика по своей значимости другим наукам?

Многие математики, без сомнения, ответят на этот вопрос «да». Тем не менее эта дисциплина занимает обособленное место в системе человеческого познания.

Одна из причин ее уникальности заключается в неоднозначной связи между математикой и красотой ее объектов.

Это правда, что практически во всех науках можно обнаружить нечто очень красивое. Например, в астрономии это небесные тела. Мы восхищаемся формой галактик, сверкающими хвостами комет или переливающимся светом туманностей. Вселенная в самом деле прекрасна. Это так. Но надо заметить, что, если бы она не была таковой, это не много бы поменяло. У астрономов нет выбора. Звезды – такие, какие они есть, и их необходимо было бы изучать, даже если бы они были совершенно непривлекательны. Кроме того, определения красоты и ее противоположности очень субъективны, но речь сейчас не об этом.

Математики, наоборот, в этом плане более свободны. Как мы уже видели, существует бесконечное количество способов определения алгебраических структур, и в каждом из них – бесконечное количество способов определения последовательностей, свойства которых могут быть изучены. Большинство из этих рядов чисел не будут выглядеть так же красиво, как выбранный Мандельбротом. В математике гораздо больше свободы выбора предмета исследования. Среди бесконечного количества теорий, которые могут быть изучены, часто для анализа выбирают только наиболее привлекательные.

Такой подход больше применим к творчеству. Симфонии Моцарта настолько красивы не случайно, а потому, что австрийский композитор сделал их такими. Из бесконечности музыкальных элементов можно с большей вероятностью получить ужасно некрасивое звучание. Нажмите случайным образом на клавиши фортепиано, и вы сами сможете в этом убедиться. Талант творческого человека в том, чтобы найти в этой бесконечности то немногое, что будет нас восхищать.

Точно так же талант математика отчасти в том, чтобы найти в бесконечном мире математики предметы исследования, заслуживающие наибольшего внимания. Если бы фигура Мандельброта не была такой красивой, то очевидно, что математики проявляли бы гораздо меньше интереса к ней. Она осталась бы неизвестной, подобно всем тем ужасным симфониям, которые никогда не будут играть.

Так кто же тогда математики в большей степени: ученые или творцы? Нельзя прямо ответить на этот вопрос. Можно ли быть только кем-то одним? Наука занимается поиском истины, и иногда истина бывает красива. Художник стремится к прекрасному, и иногда это совпадает с истиной. Для математика кажется немыслимым разделять эти понятия. Он одновременно ищет обе составляющие, не отделяет одно от другого. Он объединяет истинное и прекрасное, применимое и избыточное, стандартное и исключительное, будто используя сочетания цветов на своем бесконечном полотне.

Сам он при этом не всегда в полной мере отдает отчет, что делает. Математика, зачастую раскрывает свои секреты и истинную природу уже после смерти создателей. Пифагор, Брахмагупта, аль-Хорезми, Тарталья, Виет и другие создавали математику, не задумываясь о том, чем она станет сегодня. И, возможно, мы даже не осознаем всего того, к чему приведет развитие математики в грядущих столетиях. Только время может дать подлинную оценку математическому открытию.