Глава 6 π
Что такое ??
Число ? завораживает человечество на протяжении многих поколений. Оно проникло в массовую культуру (например, стало названием фильма[62] и маркой одеколона[63]). Школьники отмечают День ? и соревнуются, кто запомнит больше знаков числа ? после запятой[64].
Пи – шестнадцатая буква греческого алфавита. В математике ею обозначают отношение длины окружности к ее диаметру. Длина окружности в ? раз длиннее диаметра, или C = ?d. Можно записать иначе: C = 2?r, где r – радиус окружности.
Площадь окружности можно вычислить по формуле S = ?r?.
С помощью числа ? можно определить и площадь сферы – 4?r?, а также объем шара –
Эти геометрические формулы не сообщают нам величину числа ?. Начнем с того, что ? больше 3. Нарисуем круг с радиусом 1, впишем в него равносторонний шестиугольник, а затем поделим его на равносторонние треугольники.
Очевидно, что стороны всех треугольников равны 1. Периметр шестиугольника равен 6. Длина окружности несколько больше, чем периметр шестиугольника. Таким образом, 2? > 6, следовательно, ? > 3. На рисунке мы видим, что разница между периметрами двух фигур невелика. Значит, ? немногим больше 3.
Дальше мы можем поступить наоборот – описать правильный шестиугольник вокруг окружности радиусом 1. Вновь поделим шестиугольник на шесть равных треугольников. Длина любой стороны каждого треугольника будет равна
Таким образом, периметр большого шестиугольника равен
Дальше мы можем снова и снова вписывать в окружность и описывать вокруг нее правильные многоугольники со все бо?льшим количеством сторон. Когда мы дойдем до правильного 100-угольника, точность наших вычислений значительно повысится:
3,1410759… < ? < 3,1426266…
В пределе, увеличивая число сторон вписанных и описанных правильных многоугольников до бесконечности, мы будем получать все более точное значение интересующего нас числа:
? = 3,141592653589793238462643383279502884…
Так чему же в точности равно число ?? В главе 4 мы уже выяснили, что число
Число ? не так-то просто представить в виде ряда, но вот пара попыток:
В обоих случаях необходимо вести счет до бесконечности, но это не в наших силах. Мы можем остановиться после некоторого количества шагов и найти приблизительное значение интересующего нас числа.
Ни та ни другая формула на практике не используются. Когда мы доведем расчеты по формуле (A) до
Число ? можно вычислить быстрее и точнее с помощью гораздо более изощренных алгоритмов. Для науки и инженерного дела достаточно знать где-то 30 знаков после запятой. Исключительно ради забавы и спортивного интереса математики и программисты вычислили число ? с точностью больше триллиона знаков после запятой.
Трансцендентность
Числа ? и
Рациональные числа выражаются через соотношение целых чисел; скажем, 5/2, – 2/3, 7/1. Иными словами, это решения уравнений вида ax + b = 0, где a и b – целые числа. Например, 5/2 – это решение уравнения 2x – 5 = 0.
Число
А что насчет ?? Оно иррационально и, конечно, тоже не является решением линейного уравнения с коэффициентами среди целых чисел. Может быть, оно является решением какого-нибудь квадратного уравнения с коэффициентами среди целых чисел: ax? + bx + c = 0? Придется вас разочаровать, это не так. А может, стоит повысить степень? Кубическое уравнение ax? + bx? + cx + d = 0? Снова нет. Биквадратное? Уравнение пятой степени? Сотой? Миллионной?..
На самом деле число ? не является решением полиномиального уравнения любой степени с целочисленными коэффициентами. Другими словами, нет такого уравнения
anx? + an–1x?–1 + … + a2x? + a1x + a0 = 0
(где любое ak представляло бы собой целое число), куда можно было бы подставить ? вместо x, чтобы все сошлось. Это и означает, что число ? трансцендентное.
Взаимно простые числа
Странным образом число ? встречается в областях математики, не имеющих ничего общего ни с кругами в частности, ни с геометрией в целом. Например, число ? мистически входит в формулу Стирлинга для вычисления приблизительного значения факториалов (см. главу 10). А сейчас мы узнаем, как наше заветное число связано с важным свойством очередного вида целых чисел – взаимно простых.
Два положительных целых числа называют взаимно простыми, если их единственный общий делитель равен 1 (при этом по отдельности они могут быть и составными).
Например, присмотримся к числам 15 и 28. У них следующие делители:
Таким образом, 15 и 28 взаимно простые.
С другой стороны, числа 21 и 35 не взаимно простые, потому что оба делятся на 7.
Сыграем в кости? Какова вероятность того, что очки, выпавшие на обоих кубиках, будут взаимно простыми?
С равной вероятностью любой из них может выпасть гранью с цифрой 1, 2, 3, 4, 5 или 6. Каким бы ни был результат на первому кубике, второй выпадет по-своему независимо от него. Там тоже 6 вариантов. Всего это дает 36 комбинаций:
Все эти варианты равновероятны. С помощью таблицы мы можем вычислить, скажем, вероятность того, что сумма чисел на гранях двух кубиков будет равна 7. Это произойдет в шести случаях: (1, 6), (2, 5), (3, 4), (4, 3), (5, 2) и (6, 1). Таким образом, вероятность такого события равна
Вернемся к нашему вопросу: какова вероятность того, что два числа, выпавшие на разных кубиках, – взаимно простые? Давайте нарисуем новую таблицу и поставим звездочку везде, где пары чисел взаимно простые, например 5 и 2 или 2 и 5, но не 4 и 6.
Мы видим, что нам подходит 23 варианта. Таким образом, вероятность равна
Теперь поиграем в двадцатигранные кости[66]! Какова вероятность того, что они выпадут гранями со взаимно простыми числами? Нам придется построить таблицу побольше! В ней будет 20 строк, 20 столбцов и 400 клеток.
Если мы педантично пересчитаем все звездочки, то придем к выводу, что вероятность составляет
Поговорим про общий случай. Какова вероятность того, что два произвольных числа от 1 до N – взаимно простые? Здесь нам уже понадобится компьютер. Рассмотрим все комбинации – (1, 1), (1, 2), (1, 3) и т. д. до (N, N) – и посчитаем, как много пар взаимно простых чисел нам повстречается. Всего придется перебрать N? вариантов[67]. У нас получатся такие результаты:
Чем дальше мы уходим в бесконечность, тем ближе вероятность к 0,6079. И откуда же взялось это число? Чудесным образом предел нашего ряда оказался равен:
Число ? встречается не только в геометрии, оно вращается в разнообразных кругах!