Задачи и упражнения

1. Какова вероятность угадать все шесть номеров (из 49) в спортлото?

2. Из урны, содержащей 8 белых и 12 черных шаров, вынимают один шар. Какова вероятность того, что он будет белым; что он будет черны?

3. Найдите на основе рассмотрения множества событий при бросании двух игральных костей (каждая кость имеет шесть равноправных граней, пронумерованных от 1 до 6) вероятность следующих событий:

а) на одной кости четыре очка, а на другой — меньше четырех;

б) на одной кости число очков вдвое больше, чем на другой;

в) сумма очков меньше пяти;

г) сумма очков больше восьми.

4. Какова вероятность открыть замок автоматической камеры хранения при случайном наборе цифр (замок открывается только при определенных значениях четырех десятичных цифр)?

5. Оцените вероятность того, что в группе из 23 студентов, по крайней мере, у двух студентов дни рождения совпадают.

6. Партия из 10 телевизоров принимается в магазине при условии, что случайно выбранные два из них окажутся исправными. Какова вероятность того, что магазин примет партию, содержащую 4 неисправных телевизора?

7. Два стрелка проводят по одному выстрелу, причем вероятности попадания в цель для них равны соответственно 0,8 и 0,9. Найдите вероятность поражения цели обоими стрелками и вероятность поражения цели хотя бы одни из них.

8. Исследуйте на независимость события А и В при следующих испытаниях:

а) из колоды в 52 карты выбирают одну: А - «туз»; В - «бубна»;

б) бросают две игральные кости: А - «одно очко на первой кости»; В - «четное число очков на второй кости»;

в) бросают три монеты: А - «выпало два герба»; В - «выпало три герба».

- 82 -

9. Исследуйте на несовместность события А и В при бросании игральной кости, если:

а) А - «четыре очка»; В - «четное число очков»;

б) А - «четное число очков»; В - «нечетное число очков».

10. Пять карточек, помеченные цифрами от 1 до 5, тщательно перетасовывают. Какова вероятность того, что:

а) трехзначное число, определяемое номерами трех извлеченных наугад карточек, окажется четным;

б) при случайной раскладке всех карт пять мест с номерами от 1 до 5 ни одна карточка не займет места, отмеченного ее номером;

в) при поочередном выборе всех карточек их номера будут появляться в возрастающим порядке.

11. Из 30 выстрелов по цели отмечено 25 попаданий. Найти относительную частоту попаданий в цель.

Данный текст я (w_cat) набираю руками, опечатки LibreOffice Writer, как положено, выделяет красной волнистой, но если «опечатанное» слово совпадает с существующим в словаре (базе) то опечатку я не замечу и не исправлю, вычислите вероятность такой ошибки :).