Глава 6 Две стороны медали
Глава 6
Две стороны медали
Немецкий математик Бернхард Риман (1826–1866) был образцом математической строгости, а индиец Сриниваса Рамануджан (1887–1920) является примером торжества чистейшей интуиции. Они оба занимались простыми числами, и оба имели успехи и неудачи. В любом случае, их жизнь и научная деятельность ярко иллюстрируют два типа математической гениальности.
Бернхард Риман
Риман был задающим ритм музыкантом, которому аплодирует публика, состоящая из простых чисел. Однако его ритм был очень сложен. Научные открытия, особенно в области математики, во многом зависят от уже разведанной территории, от уже известных знаний. Первооткрыватель становится кем-то вроде горного проводника. Когда просто бродишь по миру чисел, важно не потерять направления, но совсем другое дело — начать восхождение. Такие походы требуют больших усилий, и продвигаться нужно более медленными темпами, чтобы восхождение было не слишком утомительным. Однако наступает момент, когда для дальнейшего восхождения требуется определенная подготовка и соответствующее оборудование.
Восхождение на двухкилометровую вершину вовсе не то же самое, что восхождение на высоту 4000 метров. С Риманом мы, безусловно, находимся в четырехкилометровой категории.
Георг Фридрих Бернхард Риман родился в деревне Брезеленц, в земле Нижняя Саксония. Возможно, из-за своей крайней застенчивости и почти патологического страха перед публичными выступлениями он не пошел по стопам отца, лютеранского пастора. Фридрих Константин Шмальфусс, директор школы, где учился молодой Риман, разрешил мальчику взять из своей личной коллекции книгу Лежандра по теории чисел — математический трактат чрезвычайной сложности. Риман за неделю прочитал ее от корки до корки и, возвращая книгу, сказал, что нашел ее очень интересной. Он не лгал. Годы спустя Риман возьмет из этой книги то, что ему нужно для создания своей теории простых чисел, сформулировав тем самым одну из самых известных гипотез в истории математики.
В возрасте 19 лет Риман прослушал несколько лекций математика Морица Штерна в Гёттингенском университете. Именно там он впервые познакомился с работами Гаусса. Через год он перешел в Берлинский университет, где преподавали Петер Густав Лежён-Дирихле, Карл Якоби, Якоб Штайнер и Фердинанд Эйзенштейн. Тесное сотрудничество Римана с Эйзенштейном привело к появлению одной из наиболее важных математических теорий XIX в. — теории функций комплексного переменного. Она стала одним из основных инструментов, которые позволили Риману сформулировать свою гипотезу о простых числах.
Бернхард Риман
* * *
ДОКТОРСКАЯ ДИССЕРТАЦИЯ
«Думаю, эта диссертация откроет для меня новые перспективы. Также я надеюсь научиться писать быстро и свободно, особенно если я чаще буду появляться в [светском] обществе, и у меня будет возможность читать лекции. Так что настрой у меня хороший». Эти слова из письма Римана своему отцу относятся к докторской диссертации, которую он в возрасте 25 лет представил к защите в Гёттингенском университете. Она называлась «Основания теории функций комплексного переменного» и была восторженно принята Гауссом, живой легендой математики того времени.
* * *
Дзета-функция
Как говорилось в третьей главе, Эйлер дал определение дзета-функции с помощью гармонического ряда:
Швейцарский математик уже знал, что данная сумма бесконечна при х, меньших или равных 1. Он также смог вычислить значения для х = 2 и х = 4:
?(2) = ?2/6; ?(4) = ?2/90
Также Эйлер установил связь между этой функцией и простыми числами (так называемое «эйлерово произведение»). Эта связь помогла ему и другим математикам доказать, что множество простых чисел бесконечно, что уже было показано Евклидом с помощью более элементарного метода.
С другой стороны, Гаусс сформулировал гипотезу, что при больших значениях х
где ?(х) — число простых чисел, меньших, чем х.
Риман поставил перед собой задачу исследовать гипотезу Гаусса с помощью дзета-функции Эйлера и решил, что наиболее перспективным подходом будет продолжить эту функцию на область простых чисел. Для этого он разработал метод аналитического продолжения. Строго говоря, аналитическое продолжение — более правильное название для дзета-функции Римана:
Вторая часть выражения, бесконечное произведение, распространяется на все простые числа р, используя эйлерово произведение, и таким образом определяет связь дзета-функции с простыми числами. Напомним, что это произведение было получено как прямое следствие основной теоремы арифметики.
Как уже говорилось, Гаусс ввел функции комплексного переменного, представляемые в трехмерном пространстве. Риман сделал следующий шаг и определил то, что позже станет называться комплексными функциями комплексного переменного. Проблема заключалась в том, что они требуют четырехмерного пространства и поэтому не могут быть наглядно представлены. Используя особые приемы, похожие на описанные в предыдущей главе, Риман получил трехмерное изображение нулей дзета-функции: поверхность, состоящую из регулярно повторяющихся холмов и впадин.
У этой функции есть два типа «нулей», то есть таких значений аргумента, которые при подстановке в функцию обращают ее в ноль. Первый тип — четные отрицательных числа: х = —2, х = —4, х = —6 …, называемые «тривиальными» нулями.
Другие нули совсем не тривиальные, и вычислить их очень трудно. Они образуют бесконечное множество и находятся на так называемой «критической полосе» комплексных чисел, действительная часть которых больше нуля, но меньше единицы (0 <= Re(х) <= 1). Эта полоса наиболее тесно связана с простыми числами. В 1896 г. именно этим вопросом занимались два математика, Жак Адамар и Шарль Жан Ла Валле Пуссен, независимо друг от друга доказавшие гипотезу Гаусса о распределении простых чисел.
В одной из записей и без каких-либо доказательств Риман сформулировал утверждение, что все нетривиальные нули дзета-функции имеют вид 1/2 + iy, то есть они лежат на прямой х = 1/2, которая проходит сквозь дзета-функцию.
«Все нетривиальные нули дзета-функции имеют действительную часть, равную 1/2».
Если эта гипотеза верна, то все простые числа распределены регулярно, точнее, насколько это возможно регулярно. Поясним это с помощью аналогии: представим себе функцию, характеризующую звуки скрипичного концерта — ряд синусоидальных кривых. Для простоты предположим, что играет только одна скрипка. Вместе с рядом четких подъемов и впадин мы увидим другие неопределенные формы, которые несколько нарушают гармонию кривой линии. В акустических терминах это называется «белый шум», возможными причинами которого являются статические разряды, фоновые звуки и так далее. Таким образом, гипотеза Римана утверждает, что любые отклонения в распределении простых чисел связаны с математическим «белым шумом». Это означает, что распределение простых чисел основано на определенном правиле, а не на чистой случайности. Таким образом Риману удалось навести некоторый порядок в разношерстной компании простых чисел.
* * *
ПОПРОБУЙТЕ САМИ
Если вы хотите пополнить ваши знания по теории функций комплексного переменного и рядов, то для этого существует много прекрасных учебников. Вы даже можете попытаться доказать гипотезу Римана. Если вам это удастся, то Математический институт Клэя вручит вам награду в один миллион долларов независимо от вашего возраста, пола или профессии. Однако награду вы получите не сразу: потребуется время на изучение доказательства и подтверждение его правильности. В июне 2004 г. Луи де Бранж де Бурсия, математик из Университета Пердью (штат Индиа-на, США), заявил, что сумел доказать гипотезу Римана, но его доказательство было позднее отклонено. То же самое произошло в 2008 г. с доказательством Сян-Джин Ли (Xian-Jin Li).
Луи де Бранж де Бурсия.
* * *
В 1914 г. британские математики Годфри Харолд Харди (1877–1947) и Джон Идензор Литлвуд (1885–1977) доказали, что на прямой линии существует бесконечное число нулей. Это не доказывает гипотезу Римана, зато подкрепляет мнение специалистов о ее правильности. Многие думают, что если на «критической прямой» находится бесконечное множество нулей, то все нули уже в нем учтены, но это лишь показывает типичную ошибку в восприятии бесконечности, концепция которой полна парадоксов, потому что может также существовать бесконечное количество нулей, которые не лежат на этой прямой. На сегодняшний день вычислено около десяти миллионов «нетривиальных» нулей, расположенных на этой линии.
Однажды выдающегося немецкого математика Давида Гильберта спросили, какой вопрос он задал бы на математическом симпозиуме, который состоится через сто лет после его смерти. Он ответил: «Я бы спросил, доказана ли гипотеза Римана». До сих пор никто не нашел доказательства. Но ста лет еще не прошло, ведь Гильберт умер лишь в 1943 г.
Математическая мысль
Гениальный французский математик Анри Пуанкаре (1854–1912) говорил, что математические исследования проходят в три этапа. Первая стадия состоит в скрупулезном анализе трудностей данной проблемы, разных подходов, необходимых для ее решения, имеющихся методов, а также в готовности к тому, что потребуется радикальное переосмысление наших знаний.
Следующей стадией является кажущаяся отчужденность. Математик перестает думать о проблеме или по крайней мере перестает думать о ней сознательно, чтобы ум погрузился в таинственную область подсознательного, где творческая деятельность подчиняется собственным правилам. Это область неточности, нестрогости и интеллектуальных блужданий. В результате такого подсознательного процесса рождается вдохновение, которое может быть вызвано событиями, не имеющими явной связи с темой исследований. Этот момент был описан ирландским математиком Уильямом Гамильтоном (1805–1865). Однажды он гулял с женой на окраине Дублина и вдруг остановился будто от удара электрическим током: «Казалось, я вдруг почувствовал, как замыкаются гальванические цепи мыслей, и вспыхнувшей искрой были основные уравнения, связывающие i, j, k…».
Гамильтон вдруг осознал, что не три, а четыре числа необходимы для описания пространственного поведения гиперкомплексных чисел. Это действительно волшебный момент, когда исследователь вдруг чувствует, как вспыхивает свет в комнате, в которой он никогда раньше не бывал.
Далее Пуанкаре говорит о процессе отбора, который идет на подсознательном уровне, в результате чего мы осознаем одни идеи и отвергаем другие. В конце концов, когда мы не в состоянии решить, являются ли эти идеи истинными или ложными, единственным критерием отбора является математическая красота.
* * *
ПАРАДОКСЫ БЕСКОНЕЧНОСТИ: ОТЕЛЬ ГИЛЬБЕРТА
Отель Гильберта — воображаемое здание, в котором имеется бесконечное количество комнат. Управляющий отелем гордится тем, что никогда не отказал ни одному гостю. А теперь представьте себе: поздним вечером, когда все номера отеля заняты, внезапно появляется новый гость. Портье идет к управляющему и сообщает ему, что гостя некуда поселить. Управляющий говорит, что надо попросить всех жильцов переселиться в номер по соседству, так что гость из первого номера переселяется во второй, гость из второго — в третий и так далее. После этого первая комната освободится, и туда можно будет поселить нового гостя. Однако в полночь портье снова прибегает к управляющему. На этот раз он просто в отчаянии. Только что для участия в симпозиуме прибыло бесконечное количество математиков. «Мы же не сможем поселить их всех!» — восклицает портье. Подумав немного, управляющий предлагает следующее: «Нам придется попросить наших гостей о еще одном одолжении. Пусть каждый умножит номер своей комнаты на два и переселится в комнату с полученным номером». Таким образом, гость из четвертого номера переселяется в комнату 8, гость из комнаты 23 — в комнату 46, гость из комнаты 352 — в комнату 704 и так далее. После этого все комнаты с нечетными номерами освободятся. В них и поселятся участники симпозиума.
Портрет Давида Гчльберта, 1912 г.
* * *
На третьей стадии математик работает совершенно сознательно и тщательно анализирует идеи, принимая одни и отбрасывая другие. Он может вернуться один или несколько раз ко второй стадии, пока не решит проблему окончательно, следуя правилам и соглашениям, принятым в математике, так чтобы решение имело законченный вид.
Для совершения математического открытия важны все три этапа, но особенно интересен второй: именно на этой стадии мысль парит, вырвавшись из плена сознания. Жак Адамар посвятил одну из своих книг, «Исследование психологии процесса изобретения в области математики» (1945), изучению роли подсознания в творческой деятельности, концентрируясь в основном на работе математиков. В книге описывается процесс математических исследований, который начинается с сознательного выбора наиболее важных аспектов проблемы, чаще всего после получения промежуточных результатов. Адамар думал, что за этим периодом должен следовать «период отдыха», когда задачу откладывают в сторону, а затем следуют моменты вдохновения, являющиеся результатом мыслительных процессов, протекающих в подсознании математика.
Наконец, Адамар говорит о так называемом этапе «наведения порядка», когда вступает в свои права формальный подход. Адамар считал, что работа подсознания имеет решающее значение на протяжении всего процесса, особенно в период «отдыха».
Анри Пуанкаре был ученым, который проявил себя во всех областях математики.
Выводы Адамара согласуются с рассуждениями Пуанкаре, хотя последний придает большее значение периоду отдыха, включающему периоды сна. В истории науки, и особенно в истории математических открытий, существует множество свидетельств того, что многие ключевые идеи приходили к ученым во время сна. Некоторые исследователи сообщают, что прорыв в их работе произошел во сне, в котором они размышляли над какой-то проблемой. Большинство ученых говорят, что решение пришло сразу после пробуждения, особенно после напряженной работы накануне. Например, Дирихле признавался, что перед сном клал под подушку «Арифметические исследования» Гаусса. Он знал, что во время сна будет происходить таинственный процесс, который нельзя контролировать, но благодаря которому на следующий день он сможет осознать неясные места книги — те, что не мог понять накануне.
Все это часть волшебного мира чисел, с которым мы познакомились в предыдущих главах. Следует еще раз подчеркнуть, что это не магия в обычном смысле слова.
Магические ритуалы и церемонии были изначально и традиционно предназначены для выявления скрытых истин. Однако ритуалы, верования или даже процесс воображения приводят ум в особое состояние, в котором он свободен от ограничений физического мира и может думать по-другому. Как если бы мы переключились на другую полосу радиочастот и оказались в состоянии принимать новые сигналы с помощью того же радиоприемника.
Наш мозг хранит информацию, но существует множество способов ее упорядочить. В качестве примера можно привести одного математика из Индии, чьи ум и воображение работали одинаково хорошо. Говорят, Рамануджан с легкостью проходил через вторую стадию, описанную Пуанкаре и Адамаром, но имел серьезные трудности с третьей. Ему просто не хватало специальной математической подготовки, чтобы формализовать свои доказательства в соответствии с принятыми соглашениями. Другими словами, Рамануджан мог видеть результаты, но ему было трудно доказать их так, чтобы математическое сообщество сочло доказательства удовлетворительными. Рамануджан не стал легендой, не успел за свою короткую жизнь прославиться как математический гений, и его труды не слишком хорошо документированы. Несмотря на бедность и недостаток образования, он был одним из наиболее выдающихся математиков своего времени и, возможно, величайшим математиком Индии.
Сриниваса Рамануджан
Рамануджан родился 22 декабря 1887 г. в бедной семье в небольшом городе Эрод в 400 км от Мадраса. В возрасте семи лет он получил грант, который позволил ему посещать занятия в школе в Кумбаконам. Там он проявил экстраординарные способности в запоминании чисел и выполнении сложных арифметических действий. Например, он знал наизусть сотни десятичных знаков постоянной ? и квадратного корня из двух. Его первым учебником математики была книга Джорджа Карра «Сборник элементарных результатов чистой и прикладной математики». Эта почти не содержавшая доказательств книга была практически непонятна, особенно для мальчика, не имеющего специальной математической подготовки. Рамануджану было всего 15 лет, когда он, по мнению биографов, начал серьезно заниматься математикой.
В 16 лет он получил грант и смог пойти в местный колледж в Кумбаконам. Страсть Рамануджана к математике привела к тому, что он уделял ей все свое время, пропуская занятия по другим предметам, и в конце концов лишился гранта. С тех пор он никогда не изучал предметы, не связанные с математикой.
Женившись в 1909 г., он вынужден был найти работу, чтобы прокормить семью. С помощью друга он получил рекомендательное письмо для работы с математиком-любителем Рамачандрой Рао, который был сборщиком налогов в Нелоре, в 130 км к северу от Мадраса. Рао так описал свою первую встречу с Рамануджаном: «Несколько лет назад мой племянник, который совсем не разбирался в математике, сказал мне: «Дядя, у меня бывает посетитель, который говорит о математике, но я не могу понять его. Не могли бы Вы посмотреть, есть ли что-нибудь интересное в том, что он говорит?» Уверенный в своем математическом превосходстве, я согласился поговорить с Рамануджаном. Это был невысокий, простой, энергичный человек, небритый, растрепанный, с привлекательным лицом и блестящими глазами; он пришел с потрепанной записной книжкой под мышкой. Он был очень беден. Он приехал из Кумбаконама в Мадрас, надеясь найти возможность заниматься исследованиями. Он не просил ничего особенного.
Ему лишь нужно было с кем-то поговорить, а я мог оказать ему такую минимальную поддержку. Он открыл книжку и начал объяснять некоторые из своих открытий. Я сразу понял, что он был необычным человеком, но моих знаний не хватало, чтобы оценить его достижения. Я решил не спешить с выводами и попросил его прийти еще раз. Так он и сделал. Он понимал ограниченность моих знаний и показал мне некоторые из его простых результатов. Шаг за шагом он познакомил меня с эллиптическими интегралами и гипергеометрическими рядами и, наконец, со своей теорией расходящихся рядов, о которой он еще никому не рассказывал, в этом я был уверен. Я спросил его, чего он хочет. Он ответил, что хочет небольшое пособие, которого хватило бы на жизнь, чтобы он мог продолжать исследования».
Индийская почтовая марка, выпущенная в 1962 г. в честь 75-летия со дня рождения Сринивасы Рамануджана.
Рамануджан не принял благотворительности и в конце концов получил должность бухгалтера в мадрасском порту. Хотя, будучи ответственным работником, он аккуратно выполнял свои обязанности в компании, его заветной целью было заработать достаточно средств на содержание семьи и посвятить себя математике.
Не будет преувеличением сказать, что Рамануджан обладал особым даром видеть числа. Существует много примеров, демонстрирующих его необыкновенные способности. Однажды Прасанта Чандра Махаланобис (1893–1972), один из индийских коллег Рамануджана во время работы в Кембридже, попытался решить задачу по математической логике, которая была напечатана в газете. Подумав над ней в течение нескольких минут, он нашел решение: пару чисел. Затем он рассказал о задаче Рамануджану, который в тот момент готовил обед (он был вегетарианцем): «Вот интересная задачка для тебя…» В ту же секунду, даже не отрываясь от кастрюли и сковородки, Рамануджан выдал общую формулу для получения бесконечного множества пар чисел, которые являлись решением задачи. Первая из пар была тем решением, которое нашел сам Махаланобис.
Дом Рамануджана в городе Кумбаконам, в котором индийский математик умер 26 апреля 1920 г.
Еще один случай произошел летом 1917 г. Рамануджан с симптомами туберкулеза был отправлен в санаторий в Патни, что на юге Лондона. Его друг и наставник, британский математик Харди, однажды утром навестил его. «Помню, я приехал к нему в Патни, — рассказывал Харди. — Я прибыл на такси со скучным, непримечательным номером 1729 и рассказал об этом Рамануджану. «Нет, — ответил тот, — это очень интересный номер. Это наименьшее число, которое может быть выражено в виде суммы двух кубов двумя различными способами». И в самом деле,
1729 = 13 + 123 = 93 + 103.
Тогда я спросил его, знает ли он решение для четвертой степени, и он ответил, подумав, что оно не так очевидно, и что первое из таких чисел должно быть очень большим».
Рамануджан увлекся областью математики, которую Харди считал самой трудной: теорией чисел. И очень скоро перед ним встала та же задача, которая мучила всех математиков, на протяжении веков блуждающих в загадочном царстве простых чисел. Рамануджан решил найти «волшебную формулу», которая бы позволила получить все простые числа. Эта задача неизбежно вела к другим серьезным проблемам, таким как исследование расходящихся рядов.
В Индии экономическое и социальное положение Рамануджана не позволяли ему добиться существенного прогресса. Знакомые математики тоже не могли ему посодействовать. Тогда друзья помогли ему составить письмо на английском языке, в котором Рамануджан описал свои результаты и желание расширить свои знания. Оно было отправлено нескольким известным европейским математикам.
Вот это замечательное письмо:
Дорогой сэр,
я беру на себя смелость обратиться к Вам, являясь чиновником бухгалтерии мадрасского порта с окладом всего лишь в 20 фунтов стерлингов в год. Мне 23 года. Я не имею университетского образования, но я закончил школу. После окончания школы я все свое свободное время посвятил математике. Я не следовал регулярной системе обучения, по которой занимаются в университетах, а избрал свою дорогу. Особенно усердно я занимался расходящимися рядами, и результаты, которые я получил, местные математики называют поразительными…
Я прошу Вас просмотреть прилагаемые материалы. Я беден и не могу сам их опубликовать, но если Вы найдете среди них что-либо ценное, то прошу Вас это опубликовать. Я не включил ни моих выкладок, ни полученных окончательных выражений, но описал пути, по которым я шел.
Так как я очень неопытен, я буду благодарен за любой совет, который Вы мне соблаговолите дать. С просьбой извинить меня за доставленные хлопоты, дорогой сэр,
искренне Ваш,
С. Рамануджан.
* * *
ГОДФРИ ХАРОЛД ХАРДИ (1877–1947)
Харди был яркой личностью с типично британским чувством юмора и очень избранным кругом друзей. Как-то раз он придумал особую систему, оценивающую таланты людей по стобалльной шкале. Конечно, она не предназначалась для широкого пользования. По этой системе он сам получил 25 баллов, в то время как Джон Литлвуд — 30, а лучший друг Харди и коллега Давид Гильберт- 80 баллов. Когда систему применили к Рамануджану, тот получил максимальный балл.
По словам Харди, его самым большим вкладом в математику было то, что он открыл Рамануджана.
* * *
Из всех математиков, получивших письмо Рамануджана, лишь Харди оценил его результаты. Рамануджан послал ему около 120 теорем, содержащих много формул.
Вспоминая это, Харди писал: «Я никогда не видел ничего подобного. Одной страницы было бы достаточно, чтобы показать, что это работа математика самого высокого уровня. Эти результаты должны были быть правильными, поскольку если бы они не были правильными, то ни у кого не хватило бы воображения придумать их».
В мае 1913 г. Харди получил для Рамануджана грант на обучение в Кембридже. Сначала Рамануджан отказался, потому что его мать не хотела, чтобы он уезжал в Англию, но в конце концов она смягчилась и благословила его в путь. Причина такой перемены, как рассказывал Харди, заключалась в том, что «однажды утром его мать сказала, что видела во сне сына, сидящего в большом зале в окружении европейцев, и что богиня Намагири приказала ей не становиться на пути сына и помочь ему достичь своей цели».
В конце концов благодаря усилиям Харди Рамануджан получил возможность учиться в Кембридже частично за счет средств Мадраса и частично за счет средств Тринити-колледжа. Английский математик, который стал его учителем, столкнулся со сложной задачей. Какой метод избрать, чтобы обучить Рамануджана современной математике?
«Глубина его знаний так же велика, как и пробелы в них», — восклицал Харди. Трудности заключались еще и в огромном количестве тем, которыми занимался Рамануджан, смешивая новые результаты с уже известными. Рамануджана надо было в значительной степени переучивать, но Харди старался не повредить слишком большим количеством формализма то, что он называл «чарами вдохновения».
* * *
НОМЕРА ТАКСИ
После исторической встречи Рамануджана и Харди в санатории Патни наименьшие числа, которые могут быть выражены в виде суммы двух кубов n различными способами, получили название «номеров такси». Они определяются следующим образом: «n-й номер такси есть наименьшее натуральное число, которое может быть выражено n различными способами в виде суммы двух положительных кубов». В настоящее время известны следующие «номера такси»:
Та(1) = 2;
Та(2) = 1729;
Та(3) = 87539319;
Та(4) = 6963472309248;
Та(5) = 48988659276962496.
Шестой «номер такси», Та (6), пока не найден.
* * *
Рамануджан (в центре) и Харди (крайний справа) на групповой фотографии у Тринити-колледжа в Кембридже.
Рамануджан провел в Кембридже пять лет, опубликовав за это время 21 статью. Пять из них были написаны совместно с Харди, который в конце концов заявил: «Я научился у него большему, чем он узнал от меня».
Весной 1917 г. у Рамануджана появились первые симптомы туберкулеза, который в конечном итоге стал причиной его смерти. Летом того же года он лечился в санатории. Большую часть оставшейся жизни он провел в постели. Осенью 1918 г., когда здоровье немного улучшилось, он получил долгожданную стипендию Тринити-колледжа и возобновил научную работу. Это время оказалось одним из самых продуктивных периодов его научной биографии. В начале 1919 г. он вернулся в Индию, где на следующий год умер.
Большинство результатов Рамануджана содержится в письмах, некоторые работы также собраны в трех личных записных книжках, одна из которых была потеряна и нашлась лишь в 1976 г. Еще никто не изучил его труды в полном объеме. Несмотря на то, что он умер в возрасте всего лишь 33 лет, Рамануджан оставил после себя более 4000 теорем.
Работа Рамануджана над простыми числами, в частности, поиск точной формулы для их описания, окутана тайной, хотя в определенной мере можно считать, что она закончилась неудачей. Харди писал по этому поводу: «Хотя Рамануджан добился блестящих успехов во многих областях, в работе над проблемами теории простых чисел он определенно потерпел неудачу. Можно сказать, что это было его единственной большой неудачей. Однако мне кажется, эта неудача в некотором смысле была не менее прекрасна, чем любая из его побед…»
Рамануджан не знал о работах Римана и Гаусса, но сам пытался найти формулу, которая даст ему список всех простых чисел. Этот список нужен был ему для того, чтобы посчитать, сколько существует простых чисел, меньших любого заданного числа. Результаты, которые он посылал Харди, не содержат доказательств его утверждений. Но одна формула почти выдает амбиции Рамануджана:
Абсурдность этого выражения, казалось бы, показывает, что ее автор всего лишь шарлатан, который даже не знает о сходящихся рядах. Но проницательный Харди увидел здесь смысл благодаря другим математическим результатам своего ученика. Ошибка в интерпретации произошла из-за путаницы в системе обозначений. Выяснилось, что Рамануджан записал здесь не что иное, как один из нулей дзета-функции Римана, в частности, решение для х = — 1. Этот метод, по словам Рамануджана, позволил ему получить формулу для вычисления количества простых чисел от одного до ста миллионов с удивительно небольшой погрешностью. Однако впоследствии Литлвуд показал, что Рамануджан ошибся. Тем не менее, поиски магической формулы привели его, как и многих других математиков, в чрезвычайно важную область, имеющую прямое отношение к сходящимся рядам.
* * *
УПОРЯДОЧЕННАЯ ЖИЗНЬ
Образ жизни Рамануджана, истинного брахмана, представителя духовной касты индуистского общества, был основан на самоконтроле, умеренности и исключении из рациона питания всех животных продуктов, а также многих продуктов растительного происхождения, таких как чеснок и лук. Любопытно отметить, что на протяжении всей жизни Рамануджан записывал большинство своих математических результатов, многие из которых он не мог точно доказать, сразу после пробуждения по утрам.
* * *
Американский математик Брюс Берндт из Иллинойсского университета, посвятивший много времени изучению работ Рамануджана, обнаружил, что тот сначала составил таблицу, отличную от посланной Харди. В оригинальной таблице простые числа для первых ста миллионов натуральных чисел описаны более подробно.
Берндт говорит, что эти результаты более точны, чем при вычислениях по формуле Римана. Это позволяло предположить, что, возможно, Рамануджан действительно открыл формулу, которую почему-то держал в секрете. Возможно, личные записные книжки Рамануджана содержат еще более удивительные результаты, которые еще предстоит открыть.
Это правда, что гениальный ум Рамануджана породил математические результаты, которые иногда оказывались неверными. Но по большей части они правильные и обладают исключительной математической красотой. Во всяком случае, его работами в настоящее время занимаются тысячи математиков по всему миру, и его результаты применяются даже в областях, далеких от чистой математики, например, в химии полимеров, компьютерном дизайне и исследованиях рака.
Страница одной из записных книжек Рамануджана.