5. Аналитическая геометрия в пространстве. Плоскость

Всякая поверхность в пространстве определяется уравнением вида f(x, y, z) = 0.

Общее уравнение плоскости: Ах + Ву + Сz + D = 0. Если А, В, С, D не равны нулю, то уравнение называется полным.

При D = 0 уравнение Ах + Ву + Сz = 0 определяет плоскость, проходящую через начало координат.

Если А = 0, то уравнение определяет плоскость, параллельную оси Ох. Если два из коэффициентов А, В, С равны нулю одновременно, то уравнение определяет плоскость, параллельную одной из координатных плоскостей: при А = 0 и В = 0 параллельно плоскости хОу, при А = 0 и С = 0 параллельно хОz, при В = 0 и С = 0 параллельно yOz. Уравнение Cz = 0 определяет плоскость xOy, By = 0 – плоскость xOz, Ax = 0 – плоскость yOz. Уравнение плоскости в «отрезках»: х / а + у / b + z / c = 1. Расстояние от точки М (х1, у1, z1) до плоскости:

Пусть имеются две плоскости А1х + В1у + С1z + D1 = 0 и А2х + В2у + С2z + D2 = 0. Угол ? между этими плоскостями:

Условие равенства двух плоскостей: А1 / А2 = В1 / В2 = С1 / С2 = D1 / D2. Условие параллельности плоскостей: А1 / А2 = В1 / В2 = С1 / С2. Условие перпендикулярности плоскостей: А1А2 + В1В2 + С1С2 = 0. Уравнение плоскости, проходящей через заданную точку М (х1, у1, z1) параллельно плоскости, заданной уравнением Ах + Ву + Сz + D = 0: А(х – x1) + В(у – y1) + С(z – z1) + D = 0. Уравнение плоскости, проходящей через три точки М1 (х1, у1, z1), М2 (х2, у2, z2), М3 (х3, у3, z3):

Уравнение плоскости, проходящей через две точки М1(х1, у1, z1) и М2(х2, у2, z2) перпендикулярно к плоскости, заданной уравнением Ax + By + Cz + D = 0:

Уравнение плоскости, проходящей через точку М1 (х1, у1, z1) перпендикулярно двум непараллельным плоскостям А1х + В1у + С1z + D1 = 0 и А2х + В2у + С2z + D2 = 0, имеет вид:

Имеем три плоскости, заданные общими уравнениями:

Данный текст является ознакомительным фрагментом.