Глава 9. Расширение области определения

I.

Итак, мы начинаем приближаться к Гипотезе Римана. Просто чтобы освежить память, сформулируем ее еще раз:

Гипотеза Римана

Все нетривиальные нули дзета-функции имеют вещественную часть, равную одной второй.

И мы уже знаем, что такое дзета-функция! Если s — некоторое число, большее единицы, то дзета-функция определяется таким выражением (9.1):

или же, несколько более изысканным образом,

где слагаемые бесконечного ряда отвечают всем положительным целым числам. Мы видели, что если к этой сумме применить процедуру, напоминающую решето Эратосфена, то ее можно переписать как

то есть

где множители в бесконечном произведении отвечают всем простым числам.

Таким образом, получаем

что я и назвал Золотым Ключом.

Пока все прекрасно, но что это там говорилось насчет нетривиальных нулей? Что такое нуль функции? Что представляют собой нули дзета-функции? И когда они нетривиальны? Не переживайте, сейчас все будет!

II.

Позабудем на время о дзета-функции. Рассмотрим бесконечную сумму совсем другого типа:

S(x) = 1 + x + x2 + x3 + x4 + x5x6 + ….

Сходится ли она вообще когда-нибудь? Без сомнения. Если x равно 1/2,то сумма представляет собой просто-напросто выражение 1.1 из главы 1.iv, поскольку (1/2)2 = 1/4, (1/2)31/8 и т.д. Следовательно, S(1/2) = 2, потому что именно к этому значению ряд и сходится. Более того, если вспомнить правило знаков, то (?1/2)21/4, (?1/2)3 = ?1/8 и т.д., а следовательно, S(?1/2) = 2/3 согласно выражению 1.2 из главы 1.v. Аналогичным образом выражение 1.3 говорит нам, что S(1/3) = 11/2 выражение 1.4 — что S(?1/3) = 13/4. Легко получить и еще одно значение для этой функции: S(0) = 1, поскольку нуль в квадрате, кубе и т.д. все равно равен нулю, и остается только единица, с которой ряд начинается.

Однако если x равен 1, то S(1) есть 1 + 1 + 1 + 1 + …, а этот ряд расходится. При x равном 2 расходимость еще более явная: 1 + 2 + 4 + 8 + 16 + …. Когда x равен ?1, происходит странная вещь: по правилу знаков сумма принимает вид 1 ? 1 + 1 ? 1 + 1 ? 1 + …. Такая сумма равна нулю, если взять четное число членов, и единице, если нечетное. Данное выражение определенно не убегает на бесконечность, но оно и не сходится. Математики рассматривают такое поведение как некоторый вид расходимости. Ситуация с x = ?2 еще хуже: сумма 1 ? 2 + 4 ? 8 + 16 ? … ведет себя так, словно убегает на бесконечность сразу по двум направлениям. Такая ситуация определенно далека от сходимости, и если вы скажете, что здесь налицо расходимость, то никто с вами спорить не будет.

Короче говоря, функция S(x) имеет значения, только когда x лежит в границах между ?1 и 1, не включая сами границы. В других случаях у нее значений нет. В таблице 9.1 приведены значения функции S(x) для аргументов x между ?1 и 1.

x S(x) ?1 или меньше (нет значений) ?0,5 0,6666… ?0,333… 0,75 0 1 0,333… 1,5 0,5 2 1 или больше (нет значений)

Таблица 9.1. Значения функции S(x) = 1 + x + x2 + x3….

Вот и все, что можно извлечь из бесконечной суммы. График этой функции показан на рисунке 9.1; на этом графике у функции нет вообще никаких значений к западу от ?1 и к востоку от 1. Используя профессиональную терминологию, можно сказать, что область определения этой функции заключена строго между ?1 и 1.

Рисунок 9.1. Функция S(x) = 1 + x + x2 + x3….

III.

Но смотрите, нашу сумму

S(x) = 1 + x + x2 + x3 + x4 + x5 + …

можно переписать в таком виде:

S(x) = 1 + x(1 + x + x2 + x3 + x4 + …).

Ряд в скобках здесь равен просто S(x): каждый член, встречающийся в одном, встречается также и в другом из двух выписанных выше рядов, а это и означает, что они совпадают.

Другими словами, S(x) = 1 + xS(x). Перенося самый правый член в левую часть, получаем равенство S(x) ? xS(x) = 1, или, другими словами, (1 ? x)S(x) = 1. Следовательно, S(x) = 1/(1 ? x). Возможно ли, чтобы за нашей бесконечной суммой скрывалась столь простая функция, как 1/(1 ? x)? Может ли равенство

1/(1 ? x) = 1 + x + x2 + x3 + x4 + x5 + x6 + … (9.2)

оказаться верным?

Без сомнения, может. Если, например, x = 1/2, то 1/(1 ? x) равняется 1/(1 ? 1/2), что есть 2. Если x = 0, то 1/(1 ? x) равно 1/(1 ? 0), что есть 1. Если x = ?1/2, то 1/(1 ? x) равняется 1/(1 ? (?1/2)), т.е. 1:11/2 что есть 2/3. Если x = 1/3, то 1/(1 ? x) равняется 1/(1 ? 1/3) т.е. 1:2/3, что есть 11/2. Если x = ?1/3, то 1/(1 ? x) равняется 1/(1 ? (?1/3)), т.е. 1:11/3, что есть 3/4. Все сходится. Для аргументов ?1/2, ?1/3, 0, 1/3, 1/2, при которых мы знаем значения функции, значения бесконечного ряда S(x) такие же, как и значения функции 1/(1 ? x). Похоже, что этот ряд и эта функция — одно и то же.

Рисунок 9.2. Функция 1/(1 ? x).

Но они не одно и то же, поскольку у них различные области определения, как это видно из рисунков 9.1 и 9.2. S(x) имеет значения только между ?1 и 1, не включая границы; функция же 1/(1 ? x) имеет значения везде, за исключением точки x = 1. Если x = 2, то ее значение равно 1/(1 ? 2), то есть ?1. Если x = 10, то значение равно 1/(1 ? 10), то есть ?1/9. Если x = ?2, то значение равно 1/(1 ? (?2)), то есть 1/3. Можно нарисовать график функции 1/(1 ? x). Как видно, он совпадает с предыдущим графиком в промежутке между ?1 и 1, но имеет еще и значения к западу от ?1 (включая саму ?1) и к востоку от 1.

Мораль здесь в том, что бесконечный ряд может определять только часть функции; или, используя подобающие математические термины, бесконечный ряд может определять функцию только на части ее области определения. Остальная часть функции может где-то прятаться, ожидая, пока ее не вытащат на свет с помощью фокуса типа того, что мы применили к S(x).

IV.

Это приводит к очевидному вопросу: а не обстоит ли дело подобным же образом и с дзета-функцией? Не случилось ли так, что бесконечная сумма, которую мы использовали для дзета-функции, — выражение (9.1) — описывает только часть этой функции? И у этой функции есть что-то еще, что нам только предстоит открыть? Может ли область определения дзета-функции

оказаться больше, чем просто «все числа, большие 1»?

Конечно может. Иначе зачем бы мы тут стали влезать во все эти подробности? Да, дзета-функция имеет значения при аргументах, меньших 1. На самом деле, как и функция 1/(1 ? x), она имеет значения при всех числах за единственным исключением x = 1.

Сейчас подходящий момент, чтобы привести график дзета-функции, который продемонстрировал бы все ее свойства в широком интервале значений. К сожалению, это невозможно. Как уже упоминалось, кроме как для простейших функций, обычно нет хорошего и надежного способа показать функцию во всем ее великолепии. Близкое знакомство с функцией требует времени, терпения и тщательного изучения. Можно, однако, изобразить дзета-функцию по кускам. На рисунках с 9.3 по 9.10 показаны значения ?(s) для некоторых аргументов, находящихся слева от s = 1, хотя для этого потребовалось выбрать свой собственный масштаб на каждом графике. Понять, где мы находимся, можно, руководствуясь подписанными аргументами (на горизонтальной оси) и значениями (на вертикальной оси). При обозначении масштаба m указывает на миллион, tr на триллион, mtr обозначает миллион триллионов, a btr — миллиард триллионов.

Коротко говоря, когда s лишь немного меньше единицы (рисунок 9.3), значения функции очень большие по величине и отрицательные — как если бы при движении на запад при пересечении линии s = 1 значения внезапно переметнулись из бесконечности в минус бесконечность. Если продолжить путешествие по рисунку 9.3 — т.е. устремлять s ближе и ближе к нулю, — то подъем вверх радикально замедляется. Когда s равно нулю, ?(s) равна ?1/2. При s = ?2 кривая пересекает ось s, т.е. ?(s) равна нулю.

Рисунок 9.3.

Затем (мы по-прежнему двигаемся на запад, добравшись теперь до рисунка 9.4) график взбирается на относительно скромную высоту (в действительности до 0,009159890…), а после этого поворачивает вниз и снова пересекает ось при s = ?4. График попадает в неглубокую впадину (?0,003986441…), а после нее снова взбирается вверх и пересекает ось при s = ?6. Еще один невысокий пик (0,004194…), спуск до пересечения с осью при = ?8 и далее в несколько более глубокую впадину (?0,007850880…), затем пересечение с осью в точке ?10, после чего уже довольно заметный пик (0,022730748…), пересечение с осью при s = ?12, впадина поглубже (?0,093717308…), пересечение с осью при s = ?14 и т.д.

Рисунок 9.4.

Дзета-функция равна нулю при каждом отрицательном четном числе, а по мере продвижения на восток (рисунки от 9.5 до 9.10) последовательные пики и впадины быстро делаются все более и более значительными. Последняя показанная впадина расположена при s = ?49.587622654, а глубина ее составляет около 305 507 128 402 512 980 000 000. Сами видите, как нелегко изобразить дзета-функцию на одном графике.

Рисунок 9.5.

Рисунок 9.6.

Рисунок 9.7.

Рисунок 9.8.

Рисунок 9.9.

Рисунок 9.10.

V.

Ho как я получил все эти значения ?(s) для s, меньших 1? Мы уже видели, что бесконечный ряд из выражения (9.1) для этого непригоден. А что пригодно? Если бы ради спасения своей жизни мне пришлось вычислить значение ?(?7,5), как бы я к этому подступился?

Я не могу объяснить этого в полной мере, потому что такое объяснение требует слишком значительного погружения в математический анализ. Но я попробую передать общую идею. Сначала определим некоторую новую функцию, используя бесконечный ряд, слегка отличный от ряда в выражении (9.1). Это ?-функция; ? (читается «эта») — седьмая буква греческого алфавита. Определим ?-функцию как

Грубая прикидка подсказывает, что у этой функции перспективы сходимости лучше, чем у выражения (9.1). Вместо непрестанного прибавления чисел здесь мы по очереди то прибавляем, то вычитаем, так что каждое следующее число до некоторой степени сокращает вклад предыдущего. Так оно и выходит. Математики в состоянии доказать — хотя здесь мы этим заниматься не будем, — что этот новый бесконечный ряд сходится всегда, когда s больше нуля. Это существенное улучшение по сравнению с выражением (9.1), которое сходится, только когда s больше единицы.

Но какая нам от всего этого польза в отношении дзета-функции? Для начала заметим, что в силу элементарных алгебраических правил A ? B + C ? D + E ? F + G ? H + … равно (A + B + C + D + E + F + G + H + …) минус 2?(B + D + F + H + …). Поэтому функцию ?(s) можно переписать как

минус

Первая скобка — это, конечно, ?(s). Вторую скобку легко упростить, пользуясь 7-м правилом действий со степенями: (ab)n = anbn. Таким же образом каждое из этих четных чисел можно разбить в произведение вида 

, после чего можно вынести 
в качестве множителя перед всей скобкой. А что останется в скобке? Там останется ?(s)! Коротко говоря,

или, переписав это «наоборот» и слегка причесав, получаем

Вот. Это означает, что если нам удастся узнать какое-то значение ?(s), то мы немедленно будем знать и значение ?(s). А поскольку можно узнать значения ?(s) между 0 и 1, можно получить и значение ?(s) в этом промежутке, несмотря на то что «официальный» ряд для ?(s) там не сходится.

Пусть, например, s равно 1/2. Если сложить 100 членов ряда для ?(1/2), то получится 0,555023639…; если сложить 10 000 членов, получится 0,599898768…. В действительности значение ?(1/2) составляет 0,604898643421630370…. (Существуют определенные приемы позволяющие вычислять такое без необходимости сложения мириад членов.) Вооруженные всем этим, мы можем вычислить значение ?(1/2) оно оказывается равным ?1,460354508…, что выглядит очень правдоподобно, если судить по первому графику из приведенного выше набора.

Но задержимся на мгновение. Не устроили ли мы тут игру в наперстки с двумя бесконечными рядами, один из которых сходится при аргументе s = 1/2, а другой — нет? Ну, строго говоря, мы действуем не совсем по правилам, и я обошелся довольно безответственно с той математикой, на которой здесь все основано. Однако же я получил правильный ответ, причем этот фокус можно повторить для любого числа между нулем и единицей (не включая ее) и получить правильное значение для ?(s).

VI.

За исключением одного только s = 1, где ?(s) не имеет значения, мы можем теперь предъявить значение дзета-функции для любого числа s, большего нуля. А как насчет аргументов равных нулю или меньших нуля? Вот здесь все по-настоящему круто. Один из результатов в работе Римана 1859 года состоит в доказательстве формулы, впервые предложенной Эйлером в 1749 году, которая выражает ?(1 ? s) через ?(s). Таким образом, если мы желаем узнать, например, значение ?(?15), то надо просто вычислить значение ?(16) и подставить его в эту формулу. Это, правда, неслабая формула, и я привожу ее главным образом для полноты картин:[75]

Всюду здесь ? — это магическое число 3,14159265…, sin — добрая старая тригонометрическая функция синус (от аргумента, выраженного в радианах), а знак «!» обозначает факториальную функцию, упоминавшуюся уже в главе 8.iii. В математике, изучаемой в старших классах, вы встречались только с факториальной функцией, аргументами которой являются положительные целые числа: 2! = 1?2, 3! = 1?2?3, 4! = 1?2?3?4 и т.д. В высшей математике, однако, есть способ определить факториальную функцию для всех чисел, кроме отрицательных целых, для чего применяется прием расширения области определения вполне в духе того, которым мы только что пользовались. Например, (1/2)! оказывается равным 0,8862269254… (на самом деле — половине квадратного корня из ?), (?1/4)! = 1,2254167024… и т.д. Отрицательные целые создают проблемы в этой формуле, но это не критические проблемы, и я ничего о них говорить не буду. На рисунке 9.11 изображена полная факториальная функция для аргументов от ?4 до 4.

Рисунок 9.11. Полная факториальная функция x!.

Если вам кажется, что все это немного чересчур, то просто примите на веру, что имеется способ получить значение функции ?(s) для любого числа s за единственным исключением s = 1. Даже если ваш взгляд никак не сфокусируется на приведенной выше формуле, то заметьте по крайней мере вот что: она выражает ?(1 ? s) через ?(s); если вы знаете, как посчитать ?(16), то вы можете тогда вычислить ?(?15); если вам известна ?(4), то вы можете вычислить ?(?3); если вам известна ?(1,2), то вы можете выделить ?(?0,2); если вам известна ?(0,6), то вы можете вычислить ?(0,4); если вам известна ?(0,50001), то вы можете вычислить ?(0,49999), и т.д. Вопрос, к которому я подбираюсь, — это что аргумент «одна вторая» имеет особый статус в приведенном соотношении между ?(1 ? s) и ?(s), потому что если s = 1/2, то 1 ? s = s. Очевидно — я хочу сказать, очевидно из рисунка 5.4 и рисунков с 9.3 по 9.10, — что дзета-функция не симметрична относительно аргумента 1/2. И тем не менее ее значения при аргументах слева от 1/2 связаны с их зеркальными образами справа весьма тесным, хотя и не самым простым образом.

Снова посмотрев на набор графиков, можно заметить кое-что еще: ?(s) равна нулю всегда, когда s — отрицательное четное число. А если при каком-то аргументе значение функции равно нулю, то этот аргумент называется нулем данной функции. Итак, верно следующее:

?2, ?4, ?6 и все остальные отрицательные четные целые числа являются нулями дзета-функции.

А взглянув на утверждение Гипотезы Римана, мы увидим, что в ней говорится про «все нетривиальные нули дзета-функции». Неужели мы у цели? Увы, нет: отрицательные четные числа и в самом деле нули дзета-функции, но все они до единого — тривиальные нули. Чтобы добраться до нетривиальных нулей, нам надо нырнуть поглубже.

VII.

В качестве добавления к этой главе еще чуть разовьем наш анализ, применив к выражению (9.2) два результата из тех, что были сформулированы в главе 7. Выпишем это выражение снова:

1/(1 ? x) = 1 + x + x2 + x3 + x4 + x5 + x6 + …

Все, что я собираюсь сделать, — это проинтегрировать обе части. Поскольку интеграл от 1/x равен ln x, я надеюсь, что не слишком злоупотреблю вашим доверием, если скажу (не останавливаясь на доказательстве), что интеграл от 1/(1 ? x) равен ?ln(1 ? x). С правой частью равенства все еще проще. Можно просто интегрировать один член за другим, используя правила интегрирования степеней, сформулированные в таблице 7.2. Результат (впервые полученный сэром Исааком Ньютоном) имеет вид:

?ln(1 ? x) = x + x2/2 + x3/3 + x4/4 + x5/5 + x6/6 + ….

Будет чуть удобнее, если обе части умножить на ?1:

ln(1 ? x) = ?x ? x2/2 ? x3/3 ? x4/4 ? x5/5 ? x6/6 ? … (9.3)

Несколько странно, хотя для наших целей и несущественно, что выражение (9.3) верно при x = ?1, тогда как выражение (9.2), с которого мы начали, при этом неверно. Действительно, при x = ?1 выражение (9.3) дает следующий результат:

ln 2 = 1 ? 1/2 + 1/3 ? 1/4 + 1/5 ? 1/6 + 1/7 ? … (9.4)

Отметим сходство с гармоническим рядом. Гармонический ряд… простые числа… дзета-функция…. Во всей этой области господствует логарифмическая функция.

Правая часть выражения (9.4) несколько своеобразна, хотя этого и не заметить невооруженным взглядом. Она в действительности является стандартной (из учебников) иллюстрацией того, насколько хитрой вещью являются бесконечные ряды. Этот ряд сходится к ln 2, что составляет 0,6931471805599453…, но только если складывать члены именно в этом порядке. Если складывать в другом порядке, ряд может сойтись к чему-нибудь другому — или может даже вообще не сойтись![76]

Рассмотрим, например, такую перестановку членов ряда: 1 ? 1/2 ? 1/4 + 1/3 ? 1/6 ? 1/8 + 1/5 ? 1/10 ? …. То же самое, но с расставленными скобками: (1 ? 1/2) ? 1/4 + (1/3 ? 1/6) ? 1/8 + (1/5 ? 1/10) ? …, т.е. 1/2(1 ? 1/2 + 1/3 ? 1/4 + 1/5 ? …). Сумма ряда с переставленными членами равна половине сумм исходного ряда![77]

Ряд из выражения (9.4) — не единственный, обладающий таким настораживающим свойством. Сходящиеся ряды разбиваются на две категории: те, у которых есть такое свойство, и те, у которых его нет. Ряды, подобные рассмотренному, сумма которых зависит от порядка суммирования, называются «условно сходящимися». Ряды, ведущие себя получше и сходящиеся к одному и тому же пределу независимо от того, как переставлены слагаемые, называются «абсолютно сходящимися». Большая часть важных в анализе рядов сходятся абсолютно. Тем не менее для нас первоочередной интерес будет представлять еще один ряд, сходящийся лишь условно, подобно ряду из выражения (9.4). Мы встретимся с ним в главе 21.