Схолия Шестнадцатая,
где выясняется, какие прекрасные математические плоды нашел однажды астроном Кеплер. Затем Радикс знакомит Илюшу поближе с его старой приятельницей касательной, и тут он узнает, что эта линия является волшебницей, умеющей делать самые настоящие чудеса, а кроме того, объясняются некоторые необъяснимости, как, например, почему Илюша не может закинуть камень в 20 граммов весом за полкилометра, хотя, согласно тройному правилу, это вполне возможно. Дальше выясняется, как наконец подружились Кеплер и Галилей с Аполлонием и Архимедом, кто мешал этой дружбе, и что из этого получилось, и как после этого Исаак Ньютон пришел с простыми и умными гипотезами и со своим «микроскопом» в царство тех могущественных карликов, которых мы называем бесконечно малыми, и как они научили людей познавать законы природы.

Громадный призрак исчез. Радикс и Илюша поблагодарили любезных старичков и собрались уходить.
— Постой, — сказал Коникос, — а ведь ты не попробовал еще нашего замечательного кваску. Выпей-ка!
Илюша взял большой красивый стакан, в который Коникос налил квас из фонтана, и стал пить. Было очень вкусно.
Однако Илюша заметил, что с каждым глотком квас менял вкус. Сначала он явно был яблочный, затем напоминал лимон, а потом стал пахнуть айвой.
— 326 —
— Очень вкусно! — сказал Илюша. — Но только почему, когда его пьешь, то вкус все время меняется?
— Потому, — наставительно сказал Коникос, — что этот фонтан есть источник имени великого Кеплера, ученого начала семнадцатого века. Он первый после долгого и бесплодного перерыва возобновил работу над сложением бесконечно малых частиц, начатую Архимедом. И он-то и вычислил объем тела, получаемого от вращения части круга, несколько большей его половины. Это тело похоже на яблоко. Вот почему наш квас и пахнет этим кеплеровским яблоком. При вращении части круга, меньшей половины, он получил другое тело и назвал его лимоном. А из вращения большей части эллипса он получил новое тело, которое назвал айвой. Из вращения меньшей части эллипса он получил оливу. Вот какие плоды были у Кеплера! А кроме того, он нашел объемы еще многих других тел.
— А теперь это сладкое вино! — воскликнул Илюша.
— А это потому, — сказал, улыбаясь, Асимптотос, — что Кеплер ведь занимался еще вычислением объемов винных бочек. Его работа так и называется «Новая стереометрия винных бочек». Она вышла в тысяча шестьсот шестнадцатом году.
— Очень вкусно! — заключил Илюша.
Затем они распростились с добрыми хозяевами сыроварни, получили на дорогу по большому куску сыра и отправились восвояси.
— Все это очень интересно, — сказал Илюша, — по все-таки я не совсем понимаю, как это делается.
— В семнадцатом веке, — сказал Радикс, — было уже довольно много ученых, которые занимались такими вопросами. Развивалась алгебра, и в решениях разных задач стало легче разбираться. Когда ты решаешь задачу арифметически, то числа после перемножения или сложения сливаются воедино, и ты уже не можешь следить за тем, что с ними происходит в течение решения. А в алгебре весь ход решения задачи у тебя перед глазами, и его легко исследовать. Греки занимались геометризованной алгеброй. Арабы много сделали для самой алгебры. В их среде были крупные ученые. Некоторые из них продолжали и даже развивали работы Архимеда по суммированию бесконечно малых. Но настоящая алгебра связана уже с европейской математикой, в частности с именем Виеты, теорему которого ты, конечно, помнишь. Затем, как мы уже говорили, замечательный французский философ и математик Декарт открыл аналитическую геометрию и ввел в употребление метод координат, хотя попытки такого рода были сделаны еще греками, а затем Орезмом в четырнадцатом веке. Это было шагом в сторону, противоположную греческим
— 327 —
ученым, — это было алгебраизацией геометрии. Это открытие дало науке очень много новых возможностей.
— А что это были за возможности? — спросил Илюша.

Вращая около этой оси часть круга, большую его половины, мы получаем яблокообразное тело.
— Дело, видишь ли, тут вот какое. Если ты умеешь составить уравнения прямой или кривой, то, получив их, можешь действовать с этими уравнениями, как с алгебраическими выражениями, что гораздо проще, чем возиться с геометрическими построениями. Если, например, надо найти точку, где пересекаются две кривые, то, зная, как написать их уравнения (другими словами, зная, как выражается игрек через икс для одной из кривых и как выражается игрек через икс для другой), приравнивают эти алгебраические выражения друг другу и решают обычным путем получившееся таким образом уравнение относительно икса. Решение дает абсциссу искомой точки. Подставив икс в любое из уравнении, ты находишь и ординату, то есть значение игрека. Ну вот, к примеру, у нас есть две прямые:
y1 = 25 + 19x;
у2 = 5 + 9х.
Спрашивается: где пересекаются эти прямые? Другими словами, требуется найти координаты точки пересечения этих прямых. Совершенно очевидно, что в искомой точке и у1 и у2 имеют одно и то же значение, а следовательно, мы найдем абсциссу точки пересечения из такого уравнения:
25 + 19х = 5 + 9x.
Решая это уравнение, находим, что
x = —2.
— 328 —
Чтобы найти ординату точки пересечения, подставляем найденное значение икса в любое из уравнений прямых и получаем:
y = —13.
Итак, координаты точки пересечения найдены, они равны:
—2; —13.

Если тело обрезать сверху и снизу, получается бочка, объемом которой интересовался Кеплер. Еще более близкое к бочке тело можно получить из эллипса подобным же образом.
Когда Декарт, говорят, привел в порядок все эти свои открытия, то он сказал: «Я решил все геометрические задачи». И это было справедливо в том смысле, что, владея его методом, можно было решить почти все задачи, известные в то время. Для примера того, как расширялись возможности наших суждений, вспомним параболу. Сперва греки говорили, что парабола есть сечение конуса плоскостью, параллельной образующей конуса. Затем, после того как было формулировано понятие геометрического места и оценено значение этого понятия, они определили параболу так: это геометрическое место точек, равноотстоящих от прямой и точки (директрисы и фокуса). А по методу Декарта легко показать, что парабола — это график квадратного трехчлена. Чисто геометрическое построение сроднилось с чисто алгебраическим. Причем и то и другое очень выиграло в смысле наглядности и простоты. Таким образом, ум математика освободился от целого ряда мелких, но хлопотливых трудностей, и это помогло заняться более важными работами. Геометрия и алгебра как бы слились в одну науку, и их сила увеличилась от этого во много раз. Алгебра позволяет преобразовывать уравнения, выра—
— 329 —
Парабола третьего порядка.

Один вещественный корень и два комплексных.
жающие геометрические соотношения, а геометрия наглядно представляет смысл многих алгебраических зависимостей и преобразований. Можно теперь высказывать очень странные на первый взгляд суждения, например, что у квадратного трехчлена есть ось или фокус. И ты будешь прав: действительно у геометрического образа квадратного трехчлена, то есть у параболы, имеется и то и другое. А есть ли смысл в таких «странных» замечаниях? Представь себе, что есть, и вот пример. Что это, собственно, означает, что у квадратного уравне-
— 330 —
ния имеются два корня? Это значит, что парабола на графике дважды пересекает ось абсцисс, или ось иксов, как мы это выяснили в Схолии Двенадцатой. Что значит, что у квадратного уравнения нет вещественных корней? Это значит, что соответствующая на графике данному квадратному трехчлену парабола совсем не пересекает оси иксов — она вся находится либо выше этой оси, либо ниже ее. Если взять уравнение третьей степени:
х3 + Ах2 + Вх + С = 0,
то у него должно быть три корня, например:
x1 = а; х2 = b; х3 = с,
теперь можно составить такое уравнение:
(x — а) (х — b) (х — с) = x3 — х2 (а + b + с) +
+ х (ab + ас + bc) — abc = 0,
откуда следует, что коэффициенты уравнения третьей степени связаны с корнями следующим образом:
А = — (а + b + с); В = ab + ас + bc; С = — abc.

Три вещественных корня.
— 331 —
Рассмотрим теперь, что обозначает геометрически утверждение о трех корнях. Если мы напишем
у = х3 + Ах2 + Вх + С,
то будем иметь дело с кривой, которая сперва поднимается вверх, доходит до некоторого максимума, потом опускается, доходит до некоторого минимума, а затем снова начинает подниматься. Разумеется, все это может идти и обратным порядком (то есть сперва будет минимум, а потом максимум), в зависимости от знака перед х3 (все эти кривые называются кубическими параболами, параболами третьего порядка). Но если кривая имеет такую форму, то ясно, что она либо пересекает ось иксов трижды, и тогда все три корня кубического уравнения вещественны, либо пересекает ее только однажды, и тогда у него есть лишь один вещественный корень и два других — комплексные. Все рассуждения чрезвычайно упрощаются. Что же касается тех преимуществ, которые дает алгебра, то легко рассудить, что гораздо проще написать
х2 = аb.
чем выполнить построением и записать такое утверждение:
«Квадрат, построенный на отрезке, длина которого равняется х, равновелик прямоугольнику, одна сторона которого равна а, а другая равна b». Тут надо вот еще что иметь в виду. Геометрия древних, как отчасти и геометрия вообще, отличается тем, что там нет общих способов и чуть ли не каждая задача решается по-своему. Греки проявили в таких решениях просто гениальное остроумие, но им не хватало того, что ныне мы называем общностью. Они сделали все, что было возможно при отсутствии общих методов, а далее вынуждены были остановиться. Труды Архимеда были замечательны еще тем, что он в связи с развитием в его время естественных наук (особенно астрономии) обратил внимание на измерение и вычисление, но и у него общие методы не выработаны, а только намечены. Труды средневековых алгебраистов и математиков эпохи Возрождения много сделали для объединения и систематизации математической работы. Декарту же вместе с Ферма посчастливилось, соединив воедино геометрию с алгеброй, дать
— 332 —
математикам в руки способ (метод) для рассмотрения и решения труднейших задач, где геометрия и алгебра помогают друг другу. Именно метод координат и аналитическая геометрия помогли решить одну замысловатую задачу, над которой математики бились с давних пор.
— А какая это задача? — спросил Илюша.
— Это была знаменитая задача о проведении касательной. А построить касательную к окружности нетрудно.

Касательная к окружности перпендикулярна к радиусу.
— Конечно, — отвечал Илюша, — потому что эта касательная перпендикулярна к радиусу.
— Правильно. Ну, а как ты проведешь касательную к любой другой кривой? Ну, например, к той же параболе? Или к кривой обратных величин, то есть к гиперболе? У параболы, например, нет радиуса.
Илюша задумался.
— А что, если сделать так. Например, надо провести касательную к данной точке параболы. Я начерчу окружность, очень похожую на параболу на этом ее кусочке, вроде тех кругов, которыми Коникос мерил кривизну. А к окружности касательную провести ничего не стоит.
— Представь себе, что и мысль Декарта шла примерно таким же образом. Нужно тебе сказать, что и до Декарта мате—
Кривая сначала поднимается (ордината ее растет), и касательная образует с положительным направлением оси абсцисс острый угол ?

Кривая затем опускаетсся (ордината ее убывает), и касательная образует с полжительным направлением оси абсцисс тупой угол ?
— 333 —
матики проводили касательные к различным кривым, но только у них не было общего правила для этого. Перпендикуляр к касательной, как мы уже говорили в Схолии Четырнадцатой, называется нормалью кривой в данной точке. Так вот Декарт и нашел общее правило для построения нормалей. А отсюда уже не так-то трудно перейти и к самим касательным.
— Это интересно, — сказал Илюша. — Но разве это так важно — уметь провести касательную к любой кривой?

В точке, соответствующей х, кривая достигает максимума и касательная становится параллельной оси абсцисс.

Чем скорее растет ордината кривой, тем больше угол ? и его тангенс.
— Сперва казалось, что это просто одна из трудных геометрических задач. Однако Декарт во второй книге своей «Геометрии» писал:
«Я готов даже сказать, что эта задача является самой полезной и обладает наибольшей общностью не только из тех задач, которые мне известны, но даже изо всех тех, которые мне хотелось когда бы то ни было узнать». Кеплер в своем сочинении о стереометрии винных бочек отметил некоторые особые свойства кривых, которые тесно связаны с касательными их. Мы вот сейчас говорили о том, что у кубической параболы есть максимум и минимум. Если ты внимательно посмотришь на график этой кривой, то заметишь, что ордината этой параболы сперва растет очень скоро, а потом все медленнее и медленнее. В точке максимума ее рост прекращается, а потом начинает падать.
— Так, — сказал Илюша. — А с минимумом наоборот: падает, падает, потом останавливается в точке минимума, а потом снова начинает расти.
— Молодец! — похвалил Радикс. — Кое-как соображаешь.
— 334 —
— Кое-как могу, когда не очень трудно, — отвечал мальчик, — да и то потому, что ты помогаешь.
— Отчего же и не помочь человеку, если он старается разобраться в том, что ему объясняют! Ну, а теперь пораскинь-ка мозгами и ответь мне на такой вопрос: что будет делать касательная к этой кривой, если я буду строить ее для различных точек кубической параболы и на чертеже брать эти точки одну за другой слева направо до максимума и после него?
Как будет наклонена касательная по отношению к положительному направлению оси абсцисс?
— По-моему, — сказал Илюша, — она до максимума будет наклонена в одну сторону, а после максимума — в другую.
— Это верно, — сказал Радикс, — а поточнее? Какой угол будет образовывать касательная с положительным направлением оси абсцисс, если мы продолжим касательную до пересечения с этой осью- до максимума и после него?
— До максимума, — ответил Илюша, — кривая поднимается, значит, верхняя часть касательной будет образовывать с положительным направлением оси абсцисс острый угол, а после максимума кривая опускается, зна—
График параболы четвертого порядка.
У этой кривой два максимума и один минимум (или наоборот); она пересекает ось абсцисс дважды…

… или четырежды.

— 335 —
чит, верхняя часть касательной образует с положительным направлением оси абсцисс тупой угол.
— Круглая пятерочка! — воскликнул Радикс. — Отвечай, юноша, что же будет с касательной в точке максимума?
— Не знаю!.. Ах да! Очень просто. Она будет параллельна оси абсцисс. Она ведь скользит по кривой и поворачивается, а в точке максимума станет совершенно горизонтально.
А потом уже повернется в другую сторону.
— А почему она поворачивается?
— Потому что ордината кривой, приближаясь к максимуму, растет все медленнее, а потом, после максимума, сейчас же начинает уменьшаться.
— Молодчага! — сказал Радикс. — Вот тебе и ясно, какая польза от касательной. Она показывает, как изменяется скорость роста ординат кривой, указывает, где находится максимум или минимум. При ее помощи можно решать задачи на нахождение максимумов, имеющих очень большое значение в технике. Как сделать из данного куска железа цилиндр наибольшей вместимости? Как сделать брус, который обладал бы наибольшей прочностью? Все эти задачи решаются при помощи метода касательных. А чтобы все было проще и ясней, мы просто будем рассматривать угол, который касательная образует с положительным направлением оси абсцисс, и характеризовать его при помощи его тангенса. Мы всегда можем построить прямоугольный треугольник, где отрезки, параллельные осям координат, будут катетами и гипотенуза будет направлена по касательной. Этот треугольник впервые был построен Архимедом при изучении спиралей, а затем после Паскаля и Барроу (ко времени Ньютона) он стал важным орудием анализа и сыграл немалую роль в развитии математики. Отношение катетов этого треугольника и будет искомым тангенсом угла наклона касательной к положительному направлению оси абсцисс.
— Вот уж не подумаешь сразу, что касательная такая полезная линия! — сказал Илюша. — А греки знали об этом?
— И Архимед и Аполлоний Пергейский, вероятно, понимали это. Но раскрылось в подробностях все гораздо позже.
Теперь припомним, как шло дело дальше. Греческая наука замирает. После падения Рима ей не только не помогают, а с ней борются. Монахи уверяют, что надо жить не рассудком, а верой, и в силу этого добираться до тайн природы грешно. Надо смотреть на природу и удивляться ее могуществу — и все! А затем начетчики Византии — люди начитанные, но плохо
— 336 —
умеющие критиковать свои собственные знания, постепенно договорились до того, что греческие математики и философы были просто говоруны, а не ученые. Этим начетчикам трудно было пользоваться научными завоеваниями Древней Греции: они не знали, что с ними делать. Древние рукописи еще переписывались, по на этом дело, по-видимому, и кончалось. Затем у арабов все как бы начинается заново. Они изучают древних греков, а также первоначальную алгебру Индии. Арабы понемногу продвигаются вперед в том деле, которое начал Архимед. Если Архимед сумел вычислить площадь параболы, то один из арабских ученых, математик и астроном Ибн-Альхайтам, живший в начале одиннадцатого века нашей эры, нашел площадь кубической параболы и параболы четвертого порядка, с которой ты немного знаком по биквадратным уравнениям. Кое-что из арабских математических сочинений постепенно просачивается в Европу. Некоторые предприимчивые европейцы даже ухитряются попадать в арабские университеты, как, например, А Кордову в Испании, хотя это была опасная штука и студент-христианин рисковал головой в мавританском университете. Во время крестовых походов влияние арабской науки, стоявшей значительно выше европейской, еще усиливается. Народы Европы начали сомневаться в могуществе церкви, которая подняла все их страны на бесполезные войны. Некоторые люди открыто говорили, что если арабы сильнее европейцев, то, значит, и культура их выше. А так как культурными людьми в то время были преимущественно клирики, то есть люди из духовенства, то в Европе начали раздаваться голоса, утверждавшие, что, может быть, и религия арабов лучше христианской. Это привело церковников в ужас, и они всеми возможными средствами стали бороться с арабской культурой. И тормозить всякую научную работу. Дошло до того, что Парижский университет однажды постановил, что тот, кто публично противопоставляет Аристотеля, переделанного католическим духовенством на свой лад, арабским ученым и соглашается с ними, достоин смертной казни. Просто и ясно! Но все-таки люди думали и понемножку работали. А затем арабские халифаты пали под ударами новых завоевателей — монголов и турок. И вот, когда пала Византия, то беженцы-греки, как мы уже тебе говорили, привезли в Италию целый ряд драгоценных сочинений греческих математиков и философов. Сочинения эти стали переводить, изучать и печатать. А это оказалось мощным толчком для всей европейской науки. И, преодолевая чудовищные препятствия схоластических и церковных бредней, к семнадцатому веку наконец появились замечательные работы великого Галилея. Его современник Кеплер изучал по методу Архимеда площади и объемы криволинейных фигур.
— 337 —
Кеплер первый ввел в астрономию сперва овальную линию, о которой он узнал из работ живописца Альбрехта Дюрера, а затем конические сечения, выяснив, что Земля ходит по эллипсу вокруг Солнца, находящегося в одной замечательной точке внутри эллипса. Это показало людям науки, что геометрические законы вплотную примыкают к законам природы. Понимаешь, как это было важно! А Галилеи начал изучать законы падения тел, то есть законы движения. И затем, после долгих и очень трудных опытов с наклонной плоскостью, ему удалось показать, что брошенный камень, стрела, выпущенная из лука, пуля, которая вылетает из пищали или мушкета, и струя воды из бочки или фонтана движутся тоже по одному из конических сечений, а именно по параболе. Таким образом, конические сечения из геометрии попали в астрономию и механику с великой пользой для этих последних. Ты уже слышал, как церковь расправилась с Галилеем. Сочинения Кеплера тоже были признаны греховными и «богопротивными», и добропорядочным католикам было воспрещено их читать под угрозой «отлучения от церкви», а это наказание в то время обозначало потерю всех гражданских прав. Но как ни бились монахи, на какие чудовищные жестокости они ни решались, ничто не могло остановить движения науки вперед. Когда люди увидели, что математика помогает и в механике и в астрономии, они постепенно перестали верить монахам, и те начали неохотно и осторожно, но все-таки отступать. Теперь, я думаю, ты понимаешь, что когда после работ Кеплера и Галилея математики не только не стали отворачиваться от понятия движения, но вплотную занялись им, то первое, о чем им пришлось подумать, это был вопрос о скорости движения. А чтобы ты составил себе хотя бы некоторое представление о том, до чего все это было трудно, я расскажу тебе, как бились до Галилея с вопросом о скорости. Аристотель, например, учил, что закон инерции есть закон сохранения покоя, неподвижности, и так именно и думали даже самые замечательные умы Возрождения, как, например, великий художник, механик и математик Леонардо да Винчи, Кардан и другие. Один из предшественников Галилея, Телезио, уже знал, что падение тела есть ускоренное движение, но он не пытался выяснить законы и обстоятельства этого, а просто пояснял это литературной аналогией, сравнивая падающее тело с уставшим путником, который, подходя к цели путешествия, ускоряет шаг. Мыслитель не только должен был найти в себе силы, чтобы оторваться от этих чисто словесных, а стало быть, беспомощных сравнений и аналогий, но должен был пойти по совершенно новому пути, непрестанно споря к тому же с таким крупнейшим авторитетом, каким был Аристо-
— 338 —
тель. Самые споры но этим вопросам нередко заходили в тупик, ибо спорящие плохо понимали друг друга. Галилея, например, упрекали в том, что он «не знает» или «не хочет знать» того, что говорили по вопросам физики древние поэты и философы, и Галилею приходилось с большим трудом втолковывать своим критикам, что он вовсе не «не знает» того, что говорили Вергилий, Лукреций или Сенека, а спорит с ними, утверждая, что они в данном случае ошибались и что это можно доказать на опыте. Но когда вопрос о скорости облекся наконец в математическую форму, то немедленно проблема изучения скорости движения в природе стала задачей изучения скорости изменения ординат кривых. Одним из первых ученых, кто занимался этим, был Торричелли. Вот почему вопрос о методе касательных приобрел такую исключительную важность. Люди и раньше, конечно, знали, что пропорциональная зависимость между двумя величинами наблюдается не всегда. И только работы Галилея впервые показали, как именно в случае падения осуществляется зависимость между временем и пройденным расстоянием, а кроме того, впервые был получен и точно сформулирован закон связи двух переменных величин, более сложный, чем тройное правило и пропорциональная зависимость.
— А что же тут такого? — спросил Илюша. — Не понимаю, почему нельзя рассуждать об изменении явлений, исходя из простой пропорциональности, если это всякому понятно?
— Дело не в том, что нам «понятно», — продолжал Радикс, — и какого мы «мнения» о явлениях, а в том, каковы законы этих явлений! А ведь они существуют сами по себе, мы можем только изучать их, но не навязывать явлениям наши «мнения». Мне достаточно того, что я устанавливаю, что в природе имеются не только зависимости пропорционального характера. Хорошо, если ты можешь сразу ответить на вопрос «почему?». А ведь есть немало случаев, когда это не так легко сделать. Например, на лодке установлен моторчик в 1,25 лошадиной силы, и лодка идет со скоростью восемь километров в час. Можно ли утверждать, что если я поставлю на эту лодку мотор в десять сил, то лодка помчится, как скорый поезд, и будет делать шестьдесят четыре километра в час? Нет, этого утверждать нельзя. Чтобы увеличить скорость в n раз, надо мощность увеличить примерно в n3 раз, а чтобы достичь такой скорости, придется обзавестись мотором не в десять, а в шестьсот сорок сил, тогда как десятисильный мотор даст только удвоенную скорость. Еще пример: ты без всякого труда можешь закинуть спортивный диск весом в восемьсот граммов на восемнадцать шагов. Но можно ли из этого вывести, что более легкий диск, в двадцать граммов весом, ты закинешь со-
— 339 —
гласно тройному правилу на семьсот двадцать шагов, то есть без малого на полкилометра? Разумеется, это сплошная ахинея, ибо такой очень легкий предмет далеко не забросишь, а уж о полкилометре смешно и говорить даже. Нередко исследователь вовсе и не задается вопросом «почему?». Очень хорошо, если он может ответить на вопрос «как?». Мы не знаем, что такое тяготение, но отлично знаем, как оно действует, и поэтому можем вычислить и траекторию артиллерийского снаряда, и толщину фундамента для большого здания, и многое другое. На этот вопрос Галилей дал совершенно точный ответ для случая падения тел. Надо еще принять во внимание то, что открытия Кеплера и Галилея связали воедино механику с геометрией, то есть как раз такие две науки, которые греки как бы противопоставляли одну другой. А вскоре выяснилось, что метод касательных имеет непосредственное отношение к бесконечно малым.
— Вот как! — сказал Илюша. — Как же это получилось?
— Дело вот в чем, — отвечал Радикс. — Давай-ка нарисуем кривую и проведем секущую. Она пересечет кривую на чертеже два раза — в точках А и Б. Дальше мы будем рассуждать так. Наша кривая связывает две величины — х и у. Их мы будем называть переменными: икс — независимой переменной, а игрек — зависимой. Ведь действительно, вспомни, как мы подставляли в уравнения различные произвольные значения икса и следили за изменением игрека. Значит, в самом деле игрек изменяется в зависимости от икса. Или, как принято говорить, игрек есть функция икса.

Если заставить точку В двигаться по кривой АВ к точке А, то секущая ABF, поворачиваясь около точки А, будет приближаться к некоторому предельному положению, когда бесконечно малое расстояние между точками А и С обратится в нуль; в этот миг секущая превратится в касательную.
Теперь заметим, что в точке А икс равен, допустим, некоторой величине ха, а игрек соответственно равен уa. Теперь увеличим немного икс, то есть дадим ему некоторое приращение. Тогда икс, соответственный точке В, будет равен хb, а игрек соответственно уb. Приращение икса будет равно xb — xa; приращение игрека yb — yа — Проведем теперь секущую через точки
— 340 —
А и В. Если теперь поворачивать секущую около точки А по часовой стрелке, то в пределе она станет касательной. Построим треугольник ABC и рассмотрим, что с ним будет делаться, если поворачивать секущую около точки В. Очевидно, стороны треугольника убывают.

tg ? называется производной «ординаты кривой по абсциссе» в точке с абсциссой xa
Уменьшается сторона АС, а вместе с ней и сторона ВС, то есть уменьшается приращение той и другой переменных и уменьшается непрерывно. В рассматриваемых здесь случаях отношение АС и ВС стремится к некоторому пределу, а секущая занимает свое предельное положение относительно кривой, то есть становится касательной. Когда АС бесконечно уменьшается, то и ВС уменьшается таким же образом. Обе эти переменные бесконечно уменьшающиеся приращения величин суть бесконечно малые, и нам тут необходимо найти предел, к которому стремится их отношение. Очевидно, что оно будет равно тангенсу угла, который образует касательная с положительным направлением оси абсцисс. Этим вопросом занимается дифференциальное исчисление; и тангенс наклона касательной к положительному направлению оси абсцисс называется производной данной функции. Зная производную той или иной функции, узнают, с какой скоростью изменяются ординаты кривой при изменении абсцисс, и можно изучить эту скорость. А этим способом исследуют очень- многие законы физики, механики и других естественных наук. На этом фундаменте и выросла наша современная техника.
— Это замечательно! — воскликнул Илюша. — Только я не пойму: к какой кривой приводит тот или иной закон физики?
— Видишь ли, когда этим занялся Исаак Ньютон, которого современники называли «счастливейшим из смертных» за его открытие закона всемирного тяготения, то он, изучая скорость, с которой изменяются ординаты данной кривой, поставил два чрезвычайно важных и вполне естественных вопроса. Он рассуждал так: если точка двигается с данной скоростью, это значит, что она в определенное время проходит некоторый путь. Будем называть икс временем, как это делал сам Ньютон. Тогда ординаты кривой дают нам пройденный путь. Вот, например, если поезд идет с постоянной скоростью сорок
— 341 —
километров в час, то за десять часов он пройдет 10 · 40 = 400 километров. Алгебраически это будет: скорость равна а, время равно х, пройденный путь у равен ах. Таким образом, уравнение пути будет у = ах. Это есть не что иное, как уравнение прямой линии. Если же скорость сама все время меняется пропорционально времени, то пройденный путь будет на чертеже изображаться не ординатой прямой, а ординатой параболы. Если же мы умеем построить к нашей кривой пройденного пути касательную, то тем самым можем определить скорость в каждой данной точке кривой или в любой момент времени. Таким образом, зная пройденный путь, мы находим скорость. Но можно поставить и обратную задачу; зная скорость, найти пройденный путь. Можно показать, что эта задача сводится к квадратуре кривой, то есть к определению ее площади, а это, как уже мы с тобой говорили, есть задача интегрирования. Так вот, таким путем Ньютон и выяснил, что нахождение касательной и определение площади суть действия, обратные друг другу, как обратны, например, возведение в степень и извлечение корня.

— Так вот, оказывается, как! — воскликнул Илюша.
— Допустим, — продолжал Радикс, — что нам дано уравнение, которое показывает, какой скоростью обладает в каждый данный момент движущееся тело. Если мы сумеем сложить одну за другой все эти данные кривой моментальные скорости и получить их так называемую «начетную» кривую, то она и будет кривой пройденного пути. Могу тебе это показать на простеньком примере. Это не будет ни дифференцирование, ни интегрирование, но нечто очень похожее на то и на другое. Пусть некоторое тело движется с постоянным ускорением, равным двум сантиметрам в секунду, и пусть его средняя скорость в первую секунду равняется трем сантиметрам, а до этой секунды оно уже прошло один сантиметр. Требуется найти кривую пройденного пути. В таком случае нетрудно составить табличку. Кривая пройденного пути есть начет
— 342 —
ная кривая, то есть каждое число ее равно сумме всех предыдущих чисел кривой скорости, и, как легко заметить, она есть не что иное, как кривая квадратов натуральных чисел, то есть…
— Парабола! — ответил Илюша.
— Правильно! А наша кривая скоростей — это что, по-твоему?
— Это кривая нечетных чисел, то есть прямая.
— Верно!
— Я уже знаю, — продолжал Илюша, — что если складывать нечетные числа одно за другим, то получатся квадраты.
— Это правило было известно еще в древнем Вавилоне. Опираясь на него, Галилей и открыл, что падающие тела движутся по параболе.
— А если интегрировать линейную функцию, которая дает прямую, то получишь на чертеже параболу, — добавил Илюша.
— Вот и еще одно свойство параболы.
— И обратно, если искать производную от правой части уравнения, то получишь функцию, изображаемую на графике прямой линией. А что получится, если интегрировать уравнение параболы?
— Параболу третьего порядка, кубическую, и так далее. Но мы не будем останавливаться на этом, а поговорим об открытии Ньютона. Причем принцип, о котором мы говорим, был известен еще учителю Ньютона, замечательному английскому математику Барроу, однако значение этого принципа не было еще тогда ясно. Это было одно из самых удивительных открытий в математике. Но, мало этого, в дальнейшем выяснились еще более поразительные вещи. Оказалось, что в большинстве случаев закон изменения для бесконечно малых частиц кривой вообще гораздо проще, чем для конечных изменений! Кривая скоростей, как мы только что видели, проще кривой пройденного пути. В физике мы, изучая плотность неоднородного тела, из тех же соображений можем принимать, что в некотором неограниченном уменьшающемся кубике плотность эта остается постоянной. То же самое возможно при изучении распределения тепловой или электрической энергии, количества истекшей из сосуда жидкости и так далее. Если, например, надо вычислить длину дуги кривой, то рассматривают бесконечно малые отрезки дуги. А для бесконечно малых отрезков дуги можно считать, что на таком ничтожно малом отрезке кривая идет по прямой. А если так, то на бесконечно малом отрезке кривой строим прямоугольный треугольник, катетами которого будут бесконечно малые приращения икса и игрека, а гипотенузой — крохотный отрезок прямой, которым в бесконечно малом заменяют отрезочек
— 343 —
дуги. Но гипотенузу прямоугольного треугольника можно получить по теореме Пифагора, а дальше надо только сложить все эти бесконечно малые гипотенузочки, и получится в пределе точная длина кривой. Опыт показывает, что это путь правильный! Так как с первого взгляда все-таки довольно трудно понять, как это возможно, заменяя маленькую дугу отрезком прямой, прийти к правильным результатам, я приведу тебе одно очень полезное рассуждение Ньютона, которое называют микроскопом Ньютона. Допустим, что когда мы начертим все это, то катет АС равен двадцати пяти сантиметрам.
Теперь я уменьшаю величину АС в миллион раз. Уменьшение это касается только самого треугольничка, то есть его катетов и гипотенузы, а дуга как была, так и остается.

При вычислении длины кривой дуга ADB заменяется прямой АВ, которую легко определить:
AB = ?[(AC)2 + (BC)2]
Если уменьшать катеты треугольника ABC и считать их бесконечно малыми, то можно вычислить длину кривой, которая будет равна пределу суммы таких бесконечно малых гипотенуз.
Очевидно, что при этом точка В будет просто скользить по измеряемой дуге. Итак, я уменьшил треугольник. А теперь я опять его увеличиваю на этот раз вместе с участком дуги снова в миллион раз, и он снова равен двадцати пяти сантиметрам. Но зато сама дуга, а ведь она-то нас больше всего интересует, теперь уже гораздо больше похожа на гипотенузу. Их еле можно отличить друг от друга. И снова я уменьшаю полученный треугольник, но на этот раз в миллион миллионов раз, а затем опять увеличиваю так, чтобы катет АС был равен двадцати пяти сантиметрам. Теперь уже ясно видно, что дуга и гипотенуза слились воедино и отличить их друг от друга невозможно. Так как ясно, что этот процесс уменьшения и рассматривания в новый, еще более сильный «микроскоп» я могу повторять столько раз, сколько мне заблагорассудится, то очевидно, что мы, уменьшая размеры приращений, можем приблизиться с нашим отрезком прямой сколь угодно близко к искомой длине дуги… Теперь начинается самое значительное и самое интересное. Слушай внимательно! Если ты
— 344 —
изучаешь некий физический закон и не можешь его из-за сложности формулировать…
В это время сзади Илюши раздалось робкое, однако настойчивое покашливание. Мальчик обернулся и увидел маленького старичка с бородой, в темных очках. Он вежливо приподнял шляпу и сказал:
— Надеюсь, что не помешал… Очень хотел бы… Меня зовут Зазубрилкин Фиолет Чернилыч. Я хотел поделиться с вами одним моим открытием. Очень упрощает прохождение курса алгебры и геометрии… Разрешите изложить?
— Пожалуйста, — ответил Илюша.
— Открытие мое, конечно, пустяковое, — произнес Фиолет Чернилыч. — Мне удалось показать, что сторона квадрата совершенно рационально выражается через его диагональ, и обратно.
— Как так? — удивился Илюша.
— Я, видите ли, сам сперва удивлялся, как это выходит, по потом убедился, что так и есть. Тут дело только в том, чтобы рассудить насчет бесконечности. Конечно, это штука довольно хитрая, но ведь все-таки длину окружности кое-как, на троечку, вычисляем, сумму уплывающей гомерической процессии тоже…
Илюша, не веря углам своим, хотел было переспросить, о какой собственно процессии идет речь. Но тут уж Фиолет Чернилыч достал из кармана мел, нарисовал квадрат, затем провел диагональ и приосанился (и в этот миг вдруг напомнил Илюше одного странного старичка, с которым он встретился в Схолии Шестой).

— Так вот-с, — начал он излагать свою теорию, — вместо того, чтобы идти от А к С по диагонали, я пойду от А к В, а от В к С. Затем от А к В1, затем к В2, потом к В3, а оттуда к С. Ясно, что второй мой путь равен первому, то есть движению от А к В и затем к С. Если сторона квадрата равна единице, то этот путь равен двум. Ясно! Теперь я пойду от А к С через точки B?1, B'2, B'3, B2, B'4, B'5 и B'6.
Затем я совершу этот же путь от А к С через точки новой ступенчатой кривой, ступени которой еще вдвое меньше. Каждый раз я буду удваивать число ступенек. Наконец я увеличу число
— 345 —
ступенек до бесконечности. Очевидно, что сколько бы раз я ни увеличивал число ступеней, их сумма равна двум. А с другой стороны, эта ступенчатая кривая неограниченно близко пододвигается к диагонали. В конце концов диагональ и ступенчатая кривая сольются, когда величина каждой ступеньки станет бесконечно малой. Отсюда ясно, что длина диагонали равняется двум, а вовсе не корню из двух. Вот и все! Вот я и хотел вас спросить… как же это?..
И вдруг Фиолет Чернилыч дернул себя за свою густейшую бородищу. К удивлению Илюши, борода медленно поползла вниз, за ней усы, багровый нос, очки и шляпа.
Перед Илюшей, гордо скрестив руки на груди, стоял не кто иной, как Уникурсал Уникурсалыч. И он снова спросил:
— Ну, что ты скажешь, о многомудрый отрок? Как насчет бесконечноватых процессов, отменяющих иррациональные числа, о синус души моей? А?
Вслед за этим Командор Ордена Семи Мостов церемонно раскланялся и расплылся в воздухе. Илюша беспомощно посмотрел на Радикса.
— Как же это так? — спросил он у своего друга жалобным голосом. — Ведь если вычислять, как он шел, например, во второй раз, то есть через точки А, В1, В2, В3 и С, то будет два треугольника. Стороны их каждая равна половине, а диагональ будет равна:

Если я обе эти диагонали сложу, то получу:

то есть все будет как надо. И, по-моему, сколько ни удваивай число ступенек, все равно так и останется. Но, с другой стороны, ведь действительно, если стороны треугольничков станут бесконечно малыми, то тогда их нельзя будет отличить от их гипотенуз и выйдет, что Уникурсал Уникурсалыч прав. В чем же здесь дело? Мне кажется, что на сколько бы частей я ни делил величину, равную корню из двух, она от этого увеличиться не может. А выходит неведомо что!
— Н-да, — сказал Радикс усмехаясь. — А не поможет ли тебе в беде этот самый «микроскоп Ньютона»? Ну-ка, попробуй!..
И действительно, как только Илюша вспомнил о микроскопе Ньютона, он тут же сообразил, что как ни уменьшай и как ни увеличивай чертеж Фиолета Чернилыча, ничего
— 346 —
ни в нем, ни в открытии Пифагора измениться не может.
Илюше даже пришло в голову, что если приложить принцип Фиолета Чернилыча к измерению дуги (о чем они только что толковали с Радиксом), то придется брать не гипотенузу прямоугольного треугольника, а просто сумму катетов, что вряд ли приведет к какому бы то ни было разумному результату…
Когда он все это изложил Радиксу, тот с ним согласился, и на том обсуждение новой выдумки Доктора Четных и Нечетных и было благополучно закончено.
— Итак, вернемся! — сказал Радикс. — Допусти, как я уже тебе говорил, что ты изучаешь некоторый важный физический процесс или закон и из-за его сложности не можешь формулировать его математически. Так вот, представь себе, что нередко в таком случае ты имеешь полную возможность формулировать, как этот процесс протекает в бесконечно малом.
— В бесконечно малом? Это я что-то не понимаю!
— Возьмем пример, — отвечал Радикс. — Ньютон искал закон остывания нагретого тела. Закон этот очень важен для многих отделов науки. В частности, очень важно и для металлургов знать, с какой скоростью остывает расплавленный металл. Ньютон наблюдал это явление, делал опыты, даже сконструировал для этого первый в мире термометр — он был масляный. Ньютон видел, что температура нагретого тела падает непропорционально времени, что если нарисовать на чертеже кривую температуры остывающего тела, то получается довольно сложная кривая, уравнения которой он не знал. Тогда он решил исследовать, что происходит при небольших изменениях температуры. Другими словами, он рассматривал в свой «микроскоп» малые участки кривой, почти не отличимые от касательной. А тангенс угла наклона касательной как раз и выражает, как ты помнишь, скорость изменения ординаты в данной точке. Таким образом, Ньютон стал исследовать, с какой скоростью происходят изменения температуры в различные моменты времени. Если нанести эти значения скорости в качестве ординат на график, то получится кривая проще кривой изменения температуры. Это обстоятельство и позволило Ньютону высказать по поводу кривой скорости остывания разумную гипотезу. Ты, наверно, и сам замечал, что стакан чаю недолго бывает таким горячим, что пить нельзя, но зато теплым остается долго.
— Это верно! — сказал Илюша.
— Так вот, Ньютон, заметив все это, высказал гипотезу, что скорость остывания нагретого тела пропорциональна разности между его собственной температурой и температурой окружающей среды. Другими словами, пока тело нагрето значительно выше окружающей среды, оно стынет быстро, а когда
— 347 —
разница между его температурой и температурой окружающей среды невелика, то и скорость остывания становится малой. Когда он пришел к такому заключению, то записал эту гипотезу математически. И тогда у него получилось уравнение, в которое входила скорость изменения пока еще не известной ему кривой. Теперь следовало перейти от бесконечно малых изменений ординаты кривой к конечным изменениям. Это можно сделать с помощью того же метода интегрирования, о котором мы говорили. В результате получаем искомую кривую, то есть находим и формулируем еще один закон природы. Эти удивительные уравнения, которые сделали человека почти всемогущим, называются дифференциальными уравнениями. Вот теперь ты знаешь кое-что о том, какие поразительные чудеса может делать Величайший Змий, чье имя Интеграл. Он строит мосты и крепости, он делает самолеты и пушки, он учит, как строить динамо-машину, турбину и плотину, как построить паровоз и пароход, как сделать рентгеновский прибор, рассказывает, как построены кости нашего тела, как устроена Вселенная и что такое электрон, и так далее, и так далее! Вот во что превратились теперь труды Ньютона. А знаешь ли ты, кстати, кто вычислил, с какой быстротой должно пустить ракету, чтобы она вылетела за пределы земного притяжения? Так вот, имей в виду, что сделал это не кто иной, как Ньютон, так что Циолковский и мы с тобой его прямые наследники!
— Мне кажется, — сказал, немного помолчав, Илюша, — что я чуть-чуть разобрался в том, что ты мне рассказывал об интегрировании. Но не можешь ли ты дать какой-нибудь пример того, как это все делается на практике?
— Отчего же! — сказал Радикс. — Это не так трудно, если только у тебя хватит терпения сперва прослушать маленький рассказ насчет очень полезного предмета, который, к сожалению, слишком редко вспоминают при математических объяснениях, то есть насчет шахматной доски, или, как говорили в старину, шашечницы.
— С удовольствием, — сказал Илюша. — Я люблю играть в шахматы. Мы очень часто играем с папой, и когда он мне дает ладью вперед, так я даже и выигрываю.
— Видишь ли, — начал Радикс, — при помощи шашечницы очень удобно производить некоторые суммирования. Но только мы не будем обязательно устанавливать, сколько у нас полей на шашечнице, ибо для наших целей необязательно, чтобы их было шестьдесят четыре. Будем считать, что доска имеет n вертикальных и горизонтальных полос, а следовательно, n2 меток. Установим сперва два способа сложения чисел, которые мы будем писать в клетках доски. Первый способ будем
— 348 —
называть сложением «по прямым». При этом способе мы будем складывать сперва все числа данной полосы (ну, например, если бы сложили все восемь чисел, написанных на седьмой полосе, если считать снизу), а затем сложим и все их суммы. Второй способ мы будем называть сложением «по гномонам». В этом случае мы будем поступать так: первым слагаемым будет одно число из верхней левой клетки (шахматисты называют эту клетку «а8»), вторым — сумма чисел в клетках вертикальной полосы «b» и горизонтальной полосы седьмой вплоть до их пересечения (клетка b7) и включая оное (то есть клетки b8, b7 и а7). Всего во втором слагаемом будет, значит, три клетки. Третье слагаемое состоит из пяти чисел, находящихся в клетках вертикальной полосы «с» и в клетках горизонтальной полосы шестой до их пересечения (клетка с6) и опять-таки включая оное (то есть клетки с8, с7, с6, b6 и а6).
Все остальные слагаемые составляются по тому же принципу (затем, очевидно, пойдет гномон с клеткой пересечения «d5», затем «е4» итак далее). Теперь приступим к самому счету. Начну с того, что напишу в каждой клетке по единице. Если их считать «по прямым», то в каждой полосе будет n. А полос во всей доске тоже n. Ясно, что на всей доске получится n2. Но теперь попробуем считать «по гномонам». Получим:
1; 2 + 1; 3 + 2; …; n + (n-1).
Сумма всех этих чисел будет, очевидно,
1 + 3 + 5 + … + 2n — 1.
Приравнивая сумму «по прямым» сумме «по гномонам», получаю:
1 + 3 + 5 + … + 2n — 1 = n2,
то есть сумма и нечетных чисел равна n2. Как будто недавно мы с тобой уже встречались с этим вавилонским равенством?
— Встречались, — отвечал Илюша.
— Прелестно! — обрадовался Радикс. -Хорошо, что ты не забыл об этом. А теперь далее. Я напишу в каждой горизонтальной полосе числа от единицы до n, то есть
1, 2, 3, 4, 5, … , n,
и ясно, что сумма их будет равна в каждой полосе
(n + 1)n / 2,
— 349 —
по правилу суммы арифметической прогрессии. Раз это так, то ясно, что сумма всех полос доски будет равна
(n + 1)n2 / 2
Теперь рассмотрим, каковы будут суммы «по гномонам». Ясно, что сумма чисел энного гномона будет
n2+ (1 + 2 + 3 + … + n-1).
Эту сумму можно записать еще иначе, то есть:
n2+ n(n + 1) / 2
и окончательно:
?n2 — (1/2)n
Теперь я буду давать в этой формуле числу и значения 1, 2, 3… и до n включительно. Суммы тогда будут равны по окончательному написанию:
3/2 · 12 — 1/2 · 1
3/2 · 22 — 1/2 · 2
3/2 · 32 — 1/2 · 3
………
………
3/2 · n2 — 1/2 · n
Сложив все это столбиком, получаю для всех полос:
3/2 · S2 — 1/2 · S
где S2 есть сумма квадратов первых и натуральных чисел, а S — сумма их первых степеней. Приравнивая, как и ранее, сумму «по прямым» сумме «по гномонам», получаю:
3/2 · S2 — 1/2 · S = n2(n + 1) / 2
— 350 —
а отсюда определяю, чему равняется S2 и после ряда несложных переделок, которые, конечно, ты и сам не откажешься выполнить, получаю сумму квадратов первых и натуральных чисел, которая будет:
S2 = (2n + 1)(n + 1)n / 6.

Советую тебе еще написать в клетках шашечницы пифагорову таблицу умножения и по ней найти, чему равна сумма кубов первых n чисел. Если же ты напишешь в клетках квадраты чисел пифагоровой таблицы, то сможешь найти и сумму пятых степеней. Однако нам пока это все, кроме суммы квадратов, не понадобится. Приступим теперь к вопросу об интегрировании. Допустим, что нам дана парабола, уравнение которой будет:
y = х2,
и нам нужно эту функцию проинтегрировать, или найти площадь, ограниченную параболой от начала координат до точки с абсциссой b, то есть площадь, ограниченную отрезком самой параболы, отрезком оси абсцисс и ординатой в точке х = b.
Для этого мы сначала делим интервал (то есть отрезок абсциссы) от нуля до b на n равных частей. Длина каждой такой части будет
h = b / n
Вся площадь теперь разбита на трапецоиды, ширина каждого из которых равна, как уже указано, b/n, а вышину мы определяем, согласно уравнению кривой, для последовательных точек параболы, как
h2, 22h2, 32h2, … , n2h2,
ибо ясно, что если х равен h, то у будет равен h2 и так далее.
Но если это так, то площади последовательных прямоугольников, которыми мы заменяем наши трапецоиды, будут равны
hh2, h22h2, h32h2, … hn2h2.
— 351 —
Видно, что сумма прямоугольников больше, нежели сумма трапецоидов, но при безграничном увеличении числа n искомая площадь будет пределом суммы прямоугольничков, то есть пределом следующего выражения:
h(h2 + 22h2 + 32h2 + … + n2h2) = h3(12 + 12 + 22 + 32 + … + n2) = b3/n3(12 + 12 + 22 + 32 + … + n2)
А так как шахматная доска уже объяснила нам, что сумма первых и квадратов натурального ряда равна
(2n + 1)(n +1)n / 6
то мы, подставляя это выражение в предыдущую формулу, после некоторых несложных переделок получим:
b3/6 (1 + 1/n)(2 + 1/n)
Спрашивается: что будет с этим выражением, если число n будет неограниченно возрастать? Ясно, что дробь 1/n будет неограниченно приближаться к нулю и ею мы можем пренебречь. В таком случае предыдущее выражение в пределе обратится в
b3/3
что и является результатом нашего интегрирования. Знай, что это один из первых интегралов, полученных человеком, что человека этого звали Архимед и что он рассуждал примерно так, как и мы.
И тут Величайший Змий вырос снова перед ними. Он взглянул на Илюшу, и мальчику показалось, что это могущественное чудовище даже улыбнулось!

— 352 —
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК