XII Бедствия
Жарко, жарко, пламя ярко!
Хороша в котле заварка!{134}
Вильям Шекспир, Макбет
Оглядываясь назад, можно сказать, что состояние оснований математики в 30-е годы XX в. было вполне удовлетворительным. Парадоксы были разрешены, хотя каждая из школ в основаниях математики решала их по-своему. Правда, не существовало единого мнения относительно того, какую математику надлежит считать правильной, но каждый математик мог выбрать подход, наиболее отвечающий его вкусам, и действовать в соответствии с принципами, которых придерживались сторонники данного направления.
Однако две проблемы продолжали беспокоить математиков. Первой, и главной, была проблема доказательства непротиворечивости математики — та проблема, которую в 1900 г. поставил в своем докладе на II Международном математическом конгрессе в Париже Гильберт. Хотя известные парадоксы были разрешены, опасность возникновения в будущем новых парадоксов по-прежнему существовала. Вторая проблема, не дававшая покоя математикам, была связана с так называемой полнотой аксиоматических систем. Говоря кратко, полнота системы аксиом, описывающих какую-либо область математики, означает в известном смысле адекватность этой аксиоматики тому разделу науки, который с ее помощью задается, т.е. означает возможность доказать на основе принятой системы аксиом истинность или ложность любого осмысленного утверждения, содержащего понятия рассматриваемой области математики.
На самом элементарном уровне проблема полноты сводится к вопросу о том, можно ли на основании аксиом Евклида доказать (или опровергнуть), например, разумную гипотезу о том, что в евклидовой геометрии высоты треугольника всегда пересекаются в одной точке. На более высоком уровне (в области кардинальных трансфинитных чисел) проблему полноты иллюстрирует гипотеза континуума (гл. IX). Полнота аксиоматической системы требует, чтобы с помощью аксиом теории множеств гипотезу континуума можно было или доказать, или опровергнуть. Полнота аксиоматики арифметики (теории чисел) требует, чтобы с помощью аксиом теории чисел (т.е. аксиом, задающих множество натуральных чисел) можно было либо доказать, либо опровергнуть гипотезу Гольдбаха, согласно которой каждое четное число представимо в виде суммы двух простых чисел. Пока мы не знаем, верна эта гипотеза или не верна, но если аксиоматика арифметики полна, то она либо верна, либо не верна — третьего исхода нет. Проблема полноты затрагивает также множество других утверждений, которые на протяжении десятилетий и даже веков математикам не удавалось ни доказать, ни опровергнуть.
Представители различных направлений в основаниях математики по-разному относились к проблемам непротиворечивости и полноты. Рассел перестал считать абсолютными истинами логические аксиомы логицистов и признал, что введенная им аксиома сводимости (гл. X) носит искусственный характер. Развитая Расселом теория типов позволила избежать известных парадоксов, и он полагал, что названная теория даст возможность разрешить и новые парадоксы, которые могут возникнуть в будущем. Но одно дело — субъективная уверенность и совсем иное — доказательство. Решить проблему полноты Расселу так и не удалось, несмотря на все его усилия.
Представители теоретико-множественного направления были убеждены в том, что их подход не приводит к новым противоречиям, однако доказать это они не могли. Проблема полноты была не единственной, и даже не главной, их заботой. Интуиционисты также довольно безразлично относились к проблеме непротиворечивости. Они считали, что интуитивные представления непротиворечивы по самой своей природе. Формальное доказательство, по их мнению, не требовалось и даже вообще было неуместным в рамках их философии. Что же касается полноты, то, по мнению интуиционистов, человеческая интуиция достаточно сильна, чтобы распознать истинность или ложность почти любого осмысленного утверждения, хотя некоторые утверждения могут оказаться неразрешимыми.
Однако формалисты во главе с Гильбертом не были настроены столь благодушно. Предприняв некоторые, весьма ограниченные, попытки решить проблему непротиворечивости в первые годы XX в., Гильберт вернулся к этой проблеме и к проблеме полноты в 1920 г.
Свой метод доказательства непротиворечивости Гильберт в общих чертах изложил в метаматематике. Что же касается полноты, то в статье «О бесконечном» (1925) Гильберт, по существу, повторил идеи, высказанные им в докладе на II Международном математическом конгрессе в Париже (1900). Там Гильберт утверждал, что «каждая определенная математическая проблема непременно поддается строгому решению». Ту же мысль, только развитую несколько подробнее, мы находим в статье Гильберта от 1925 г.:
В качестве примера возможного подхода к решению фундаментальных проблем я хотел бы избрать тезис о разрешимости любой математической задачи. Мы все убеждены в том, что любая математическая задача поддается решению. Это убеждение в разрешимости каждой математической проблемы является для нас большим подспорьем в работе, когда мы приступаем к решению математической проблемы, ибо мы слышим внутри себя постоянный призыв: вот проблема, ищи решение. Ты можешь найти его с помощью чистого мышления, ибо в математике не существует ignorabimus [мы не будем знать].
(Ср. также ([51], с. 22.)
Выступая с докладом на Международном математическом конгрессе в Болонье (1928), Гильберт подверг критике прежние доказательства полноты как построенные на использовании принципов логики, недопустимых в математике, но выразил несокрушимую уверенность в полноте своей собственной системы: «В нашем мышлении нет ничего таинственного — мы мыслим по вполне определенным и формулируемым правилам, которые твердо гарантируют абсолютную надежность наших суждений». Каждый математик, по словам Гильберта, разделяет убеждение в разрешимости любой четко поставленной математической проблемы. В статье «Естествознание и логика» (1930) Гильберт утверждал: «На мой взгляд, истинная причина, в силу которой Конту{135} не удалось найти неразрешимую математическую проблему, заключается в том, что неразрешимых проблем не существует».
В работе «Обоснования математики», о которой Гильберт доложил в 1927 г., а опубликовал в 1930 г., он, по существу, развил свои идеи, выдвинутые в работе 1905 г. По поводу предложенного им метаматематического метода (теории доказательства) установления непротиворечивости и полноты Гильберт утверждал следующее:
С помощью этого нового обоснования математики, который справедливо можно именовать теорией доказательства, я преследую важную цель: именно, я хотел бы окончательно разделаться с вопросами обоснования математики как таковыми, превратив каждое математическое высказывание в поддающуюся конкретному показу и строго выводимую формулу и тем самым приведя образование понятии и выводы, которыми пользуется математика, к такому изложению, при котором они были бы неопровержимы и все же давали бы картину всей науки. Я надеюсь, что смогу с помощью своей теории доказательства полностью достигнуть этой цели, хотя до ее полного завершения необходима еще большая работа.
([50], с. 365.)
Гильберт был уверен, что его теория доказательств позволит разрешить проблемы непротиворечивости и полноты.
К 30-м годам были получены некоторые результаты о полноте различных аксиоматических систем. Сам Гильберт построил несколько искусственную систему, охватывающую лишь часть арифметики, и доказал ее полноту и непротиворечивость. Аналогичные ограниченные результаты вскоре удалось получить и другим авторам. Так, была доказана непротиворечивость и даже полнота таких сравнительно тривиальных аксиоматических систем, как исчисление высказываний. Некоторые из доказательств принадлежали ученикам Гильберта. В 1930 г. Курт Гёдель (1906-1978), ставший впоследствии профессором Института высших исследований в Принстоне, доказал полноту исчисления предикатов первой ступени, охватывающего высказывания и пропозициональные функции.{136} Формалисты были в восторге от полученных результатов. Гильберт еще больше уверовал в то, что его метаматематике (его теории доказательства) удастся доказать непротиворечивость и полноту всей математики.
Но уже в следующем году Гёдель опубликовал другую работу, поистине открывшую ящик Пандоры. В этой работе, называвшейся «О формально неразрешимых утверждениях [оснований математики] и родственных систем» (1931), содержались два поразительных результата. Наибольшее смятение у математиков вызвал один из них — утверждающий, что непротиворечивость любой достаточно мощной математической системы, охватывающей арифметику целых чисел, не может быть установлена средствами самой этой системы на основе математических принципов, принятых различными школами в основаниях математики: логицистами, формалистами и представителями теоретико-множественного направления. Это утверждение Гёделя прежде всего касалось формалистской школы, ибо Гильберт по собственной воле ограничил свою метаматематику такими логическими принципами, которые были приемлемы даже для интуиционистов, чем сузил арсенал доступных формалистам логических средств. Результат Гёделя послужил поводом для известного высказывания Германа Вейля: «Бог существует, поскольку математика, несомненно, непротиворечива, но существует и дьявол, поскольку доказать ее непротиворечивость мы не можем».
Приведенный результат Гёделя является следствием из установленного им другого, не менее поразительного результата, который известен как теорема Гёделя о неполноте. Она утверждает, что если формальная теория T, включающая арифметику целых чисел, непротиворечива, то она неполна.{137} Иначе говоря, существует имеющее смысл утверждение арифметики целых чисел (обозначим его S), которое в рамках данной теории невозможно ни доказать, ни опровергнуть. Но либо утверждение S, либо утверждение «не S» истинно. Следовательно, в арифметике существует истинное утверждение, которое недоказуемо, а значит, и неразрешимо. Хотя Гёдель не указал точно, о каком классе аксиоматических систем идет речь в полученном им результате, теорема о неполноте применима к системам Рассела — Уайтхеда, Цермело — Френкеля, гильбертовской аксиоматике чисел и ко всем наиболее распространенным аксиоматическим системам. Казалось, непротиворечивость достигается ценой неполноты. И словно для того, чтобы разбередить рану и вновь унизить математиков, истинность некоторых неразрешимых утверждений удалось доказать с помощью рассуждений (правил логики), выходящих за рамки допустимого в перечисленных выше формальных системах.
Как и следовало ожидать, получение столь поразительных результатов потребовало от Гёделя немалых усилий. Основная идея его работы состояла в том, чтобы каждому символу или каждой последовательности символов в системе, принятой, например, логицистами или формалистами, сопоставить определенное число. Любому утверждению или последовательности утверждений, образующих доказательство, Гёдель также ставил в соответствие некоторое число — гёделевский номер.{138}
Рассмотрим схему Гёделя подробнее. Произведенная Гёделем арифметизация состояла в том, что каждому математическому понятию он сопоставлял некоторое натуральное число. Числу 1 Гёдель поставил в соответствие число 1, знаку равенства — число 2, введенному Гильбертом символу отрицания — число 3, знаку плюс — число 5 и т.д. Таким образом, набору символов 1 = 1 Гёдель сопоставляет числовые символы 1, 2, 1, тогда как равенству (формуле) 1 = 1 сопоставляется не три (числовых) символа 1, 2, 1, а единственное число, структура которого позволяла бы восстановить все входящие в него символы-компоненты. А именно: Гёдель выбрал три первых простых числа 2, 3 и 5 и, составив из них число 21?32?51 = 90, присвоил его равенству 1 = 1. Число 90 допускает однозначное разложение в произведение степеней простых чисел 21?32?51, по которому нетрудно восстановить символы 1, 2, 1.
Каждой формуле рассматриваемых систем Гёдель поставил в соответствие некоторое число. Каждой последовательности формул, образующих доказательство, он также сопоставил определенное число. Показатели в разложении номера доказательства в произведение степеней простых чисел сами не являются простыми числами, хотя и связаны с ними довольно просто. Так, число 2900?390 может быть гёделевским номером доказательства. Это доказательство содержит формулы с гёделевскими номерами 900 и 90. Следовательно, по номеру доказательства мы можем восстановить входящие в него формулы.
Утверждения метаматематики о формулах рассматриваемой аксиоматической системы Гёдель также представил с помощью чисел. Каждое метаматематическое утверждение получило свой гёделевский номер. Тем самым получено «отображение» метаматематики в арифметику.
Осуществив перевод словесных утверждений метаматематики на арифметический язык, Гёдель показал, как построить арифметическое утверждение G, означающее в переводе на метаматематический язык, что утверждение с гёделевским номером m недоказуемо. Но утверждение G, рассматриваемое как последовательность символов, имеет гёделевский номер m. Следовательно, G утверждает о самом себе, что оно недоказуемо. Итак, если G доказуемо, то оно должно быть недоказуемым, а если G недоказуемо, то оно должно быть доказуемым, поскольку недоказуемо, что оно недоказуемо. Так как любое арифметическое утверждение либо истинно, либо ложно, формальная система, которой принадлежит G, неполна (если только она непротиворечива). Тем не менее арифметическое утверждение G истинно, так как является утверждением о целых числах, которое можно доказать, используя более интуитивные рассуждения, чем допускает формальная система.
Поясним суть гёделевской схемы на примере. Рассмотрим утверждение S: «Это утверждение ложно». Оно приводит к противоречию. Действительно, если S, рассматриваемое как единое целое, истинно, то оно, согласно ему самому, должно быть ложным, а если S ложно, то ложно, что S ложно, в силу чего S должно быть истинным. Гёдель заменил слово «ложно» словом «недоказуемо», превратив S в утверждение S — «Это утверждение недоказуемо». Если утверждение недоказуемо, то утверждаемое им истинно. С другой стороны, если утверждение доказуемо, то оно ложно, или, в соответствии с обычной логикой, если утверждение истинно, то оно недоказуемо. Следовательно, утверждение истинно в том и только в том случае, если оно недоказуемо. Мы приходим не к противоречию, а к истинному утверждению, которое недоказуемо, т.е. неразрешимо.
Заготовив впрок неразрешимое утверждение, Гёдель построил арифметическое утверждение A, соответствующее метаматематическому утверждению «Арифметика непротиворечива», и доказал, что из A следует G. Поэтому если бы A было доказуемым, то и G было бы доказуемым. Но так как G неразрешимо, A недоказуемо. Иными словами, утверждение A неразрешимо. Тем самым установлена невозможность доказать «внутренними средствами» (т.е. в рамках той же системы) непротиворечивость арифметики любым методом — с помощью любой системы логических принципов, представимой в виде арифметической системы.
На первый взгляд кажется, что неполноты можно было бы избежать, если ввести в формальную систему дополнительный логический принцип или математическую аксиому. Но метод Гёделя позволяет доказать, что если дополнительное утверждение допускает перевод на язык арифметики по предложенной Гёделем схеме (согласно которой символам и формулам мы ставим в соответствие некоторые числа — их гёделевские номера), то и в расширенной системе можно сформулировать неразрешимое утверждение. Иначе говоря, избежать неразрешимых утверждений и доказать непротиворечивость можно лишь с помощью логических принципов, «не отображаемых» в арифметику. Чтобы пояснить суть дела, воспользуемся аналогией (хотя и несколько неточной): если бы логические принципы и математические аксиомы были сформулированы на японском языке, а арифметизация Гёделя означала бы перевод на английский язык, то результаты Гёделя получались бы до тех пор, пока был бы осуществим перевод с японского на английский.
Таким образом, теорема Гёделя о неполноте утверждает, что ни одна система математических и логических аксиом, арифметизуемая тем или иным способом (например, так, как это сделал Гёдель), не позволяет охватить даже все содержащиеся в ней истины, не говоря уже о всей математике, поскольку любая система аксиом неполна. В любой аксиоматической системе существуют утверждения, недоказуемые в рамках данной системы. Истинность таких утверждений может быть установлена лишь с помощью неформальных рассуждений. Теорема Гёделя о неполноте, показавшая, что аксиоматизация имеет свои пределы, разительно отличалась от господствовавших в конце XIX в. представлений о математике как о совокупности аксиоматизируемых (и аксиоматизированных) теорий. Теорема Гёделя нанесла сокрушительный удар по всеобъемлющей аксиоматизации. Неадекватность аксиоматического подхода сама по себе противоречием не была; однако она явилась полной неожиданностью, поскольку математики, особенно формалисты, предполагали, что в рамках некоторой аксиоматической системы любое истинное в ней утверждение заведомо доказуемо.{139} Брауэр установил, что интуитивно воспринимаемые истины часто лежат далеко за пределами того, что было доказано в классической математике, а Гёдель доказал, что интуитивно воспринимаемые истины вообще выходят за рамки математического доказательства. По выражению Пауля Бернайса, ныне более разумно не столько рекомендовать аксиоматику, сколько предостерегать против ее переоценки. Разумеется, сказанное выше не исключает возможности появления новых методов доказательства, которые выходят за пределы допустимого логическими принципами, принятыми различными школами в основаниях математики,
Оба полученных Гёделем результата потрясли математику. Невозможность доказать непротиворечивость наносила смертельный удар прежде всего формалистской философии Гильберта, который не сомневался в успехе своего намерения в рамках метаматематики доказать непротиворечивость всей математики. Но результаты задевали далеко не только гильбертовскую программу. Гёдель доказал, что какой бы подход к математике на основе надежных логических принципов мы ни избрали, нам все разно не удается доказать непротиворечивость математики. Ни один из предложенных подходов к основаниям математики не был исключением. Это означало, что математика вынуждена бесповоротно отказаться от претензий на абсолютную достоверность или значимость своих результатов, т.е. лишиться одной из основных своих особенностей, на которую претендовала еще сравнительно недавно. Положение осложнялось невозможностью доказать непротиворечивость: ведь все, о чем говорили математики, могло оказаться бессмыслицей, ибо теперь никто не мог гарантировать, что в будущем не возникнет противоречия. Случись такое и окажись противоречие неразрешимым — вся математика обратилась бы в прах. Действительно, одно из двух противоречивых утверждений должно быть ложным, а согласно принятой всеми математическими логиками концепции импликации (так называемой материальной импликации, о которой говорилось в гл. VIII), из ложного утверждения может следовать что угодно. Итак, математики работали под угрозой полного провала. Еще одни удар нанесла теорема о неполноте. И здесь больше всех пострадал Гильберт, хотя теорема Гёделя применима ко всем формальным подходам к математике.
Пусть большинство математиков и не высказывали своих надежд столь откровенно и уверенно, как Гильберт, но все они, несомненно, надеялись, что им удастся решить любую четко поставленную проблему. Например, к 30-м годам XX в. одним лишь попыткам доказать «последнюю» («великую») теорему Ферма (утверждающую, что при любом натуральном n > 2 никакие три целых числа x, y и z не могут удовлетворять уравнению xn + yn = zn) были посвящены сотни обширных и глубоких по содержанию работ. Но, может быть, постигшая их авторов неудача объяснялась неразрешимостью теоремы Ферма?
Теорему Гёделя о неполноте до некоторой степени можно рассматривать как отрицание закона исключенного третьего. Каждое утверждение мы считаем либо истинным, либо ложным. В современных основаниях математики это означает, что рассматриваемое утверждение доказуемо или недоказуемо с помощью законов логики и аксиом того раздела математики, к которому относится интересующее нас утверждение. Гёдель же доказал, что некоторые утверждения нельзя ни доказать, ни опровергнуть. Следовательно, теорема Гёделя о неполноте в известной мере подкрепляет позиции интуиционистов, хотя те возражали против логических принципов совсем по другим причинам.
Непротиворечивость можно было бы считать доказанной, если бы в противовес подходу Гёделя в системе удалось обнаружить неразрешимое утверждение: ведь как мы уже установили, опираясь на свойства материальной импликации, если в системе имеется противоречие, то в ней можно доказать что угодно. Однако до сих пор обнаружить неразрешимое утверждение не удалось.
Гильберт не считал, что потерпел поражение. По своей натуре Гильберт был оптимистом и обладал поистине безграничной верой в мощь человеческого разума и его способность к познанию. Этот оптимизм придавал ему мужество и силы, мешая в то же время признать возможность существования неразрешимых математических проблем. Для Гильберта математика была областью человеческой деятельности, познанию в которой не существовало иных пределов, кроме возможностей таланта исследователя.
Гёдель опубликовал свои результаты в 1931 г., т.е. до выхода в свет первого (1934) и второго (1939) томов фундаментального труда Гильберта и Бернайса по основаниям математики [75]. В предисловии ко второму тому оба этих автора вынуждены были признать необходимость расширить используемые в метаматематике методы рассуждений. Гильберт и Бернайс включили в число допустимых методов трансфинитную индукцию.{140} Гильберт полагал, что новые принципы вполне могли бы быть интуитивно правильными и приемлемыми для всех. Он пытался развивать дальше это направление, но не пришел ни к каким новым результатам.
События, последовавшие за переломным 1931 г., еще более осложнили ситуацию и обрекли на неудачу любые попытки определить, что такое математика и какие результаты следует считать правильными. Мы упомянем лишь об одном таком событии, далеко не самом важном. Представителю гильбертовской школы Герхарду Генцену (1909-1945) удалось ослабить запреты на методы доказательства, допустимые в метаматематике Гильберта, в частности за счет использования трансфинитной индукции, и в 1936 г. он смог доказать непротиворечивость арифметики и отдельных разделов математического анализа.
Некоторые представители гильбертовской школы в основаниях математики приняли предложенное Генценом доказательство и отстаивали его. Эти формалисты утверждали, что работа Генцена не выходит за пределы интуитивно приемлемой логики. Итак, чтобы защитить формализм, понадобилось перейти от «финитной» логики Брауэра к «трансфинитной» логике Генцена. Противники метода Генцена с сарказмом замечали, что «приемлемая» логика оказывается уж слишком изощренной и что если непротиворечивость арифметики вызывает какие-то сомнения, то введение не менее сомнительного метаматематического принципа вряд ли в состоянии разрешить их. Использование трансфинитной индукции считалось спорным еще до того, как ее взял на вооружение Генцен, и некоторые математики приложили немало усилий, чтобы по возможности исключить трансфинитную индукцию из доказательств. Трансфинитная индукция не была интуитивно убедительным принципом. По выражению Вейля, подобного рода принципы снижают стандартный уровень доказательного рассуждения до такого состояния, когда суть доказываемого становится весьма расплывчатой.
Теорема Гёделя о неполноте породила ряд побочных проблем, о которых также следовало бы упомянуть. Поскольку в любой сколько-нибудь сложной области математики существуют утверждения, которые невозможно ни доказать, ни опровергнуть, возникает вопрос: можно ли определить, доказуемо или недоказуемо любое заданное утверждение? Этот вопрос известен под названием проблемы разрешимости. Решение ее требует эффективных методов (возможно, аналогичных тем, которые используются при расчетах на ЭВМ), позволяющих за конечное число шагов устанавливать доказуемость (истинность или ложность) утверждения или класса утверждений.
Поясним понятие разрешающей процедуры на нескольких простых примерах. Чтобы решить, делится ли одно целое число на другое, мы можем осуществить процесс деления. Если остаток от деления равен нулю, то это означает, что первое число на второе делится. Аналогичная процедура позволяет ответить на вопрос, делится ли один многочлен нацело на другой. Имеется также четкий алгоритм, позволяющий ответить на вопрос, существуют ли целые числа x и y, удовлетворяющие уравнению ах + by = c с целыми a, b и c.
В своем докладе на II Международном математическом конгрессе в Париже Гильберт поставил очень интересную (десятую) проблему о разрешимости диофантовых уравнений, сформулировав ее так: можно ли указать способ, позволяющий за конечное число шагов установить, разрешимо ли диофантово уравнение в целых числах? (Класс уравнений ах + by = c состоит из диофантовых уравнений, ибо каждый элемент класса представляет собой одно уравнение, связывающее два неизвестных, и решить его требуется в целых числах. Проблема Гильберта относится к гораздо более общему классу диофантовых уравнений.) Проблема разрешимости гораздо сложнее десятой проблемы Гильберта, но математики, работающие над ней, охотно ссылаются на десятую проблему Гильберта, так как уже одно то, что полученные при этом результаты связаны с решением указанной проблемы, придает им особую значимость.
Точный смысл понятию эффективной процедуры придал профессор Принстонского университета Алонсо Черч (р. 1903), который ввел определение рекурсивной, или, как еще говорят, вычислимой функции. Рассмотрим простой пример рекурсивности. Пусть, по определению
f(1) = 1, f(n + 1) = f(n) + 3.
Тогда
f(2) = f(1) + 3 = 1 + 3 = 4, f(3) = f(2) + 3 = 4 + 3 = 7.
Шаг за шагом мы можем вычислить все значения функции f(n). Такая функция f(x) называется рекурсивной. Введенное Черчем понятие рекурсивности равнозначно вычислимости, но отличается большей общностью.
В 1936 г. Черч, используя введенное им новое понятие рекурсивной функции, показал, что в общем случае разрешающая процедура (для узкого исчисления предикатов) невозможна: если задано конкретное утверждение, то не всегда можно найти алгоритм, позволяющий установить, доказуемо оно или опровержимо. В любом частном случае утверждение может оказаться доказуемым, но мы не располагаем критерием, который позволял бы заранее определять, доказуемо оно или недоказуемо. Математики могут годами напрасно терять время, безуспешно пытаясь доказать то, что вообще недоказуемо. Относительно десятой проблемы Гильберта Юрий Матиясевич в 1970 г. доказал, что не существует алгоритма, позволяющего установить, удовлетворяют ли какие-либо целые числа соответствующим диофантовым уравнениям или нет.{141}
Различие между неразрешимыми утверждениями и проблемами, для которых нет разрешающей процедуры, довольно тонко, но весьма четко и определенно. Неразрешимые утверждения неразрешимы в конкретной системе аксиом и существуют в любой сколько-нибудь значительной аксиоматической системе. Так, постулат Евклида о параллельных неразрешим в системе остальных аксиом евклидовой геометрии. Другим примером может служить утверждение о том, что вещественные числа образуют наименьшее множество, удовлетворяющее обычно аксиоматизируемым свойствам вещественных чисел.
Нерешенные проблемы могут оказаться неразрешимыми, но далеко не всегда это известно заранее. Например, задача о трисекции угла с помощью циркуля и линейки в течение по крайней мере нескольких столетий ошибочно считалась неразрешимой. Но трисекция оказалась невозможной. Теорема Черча утверждает, что не существует способа, позволяющего заранее определить, можно ли доказать или опровергнуть утверждение. Одни утверждения можно доказать и опровергнуть одновременно, другие нельзя ни доказать, ни опровергнуть — они неразрешимы, но их неразрешимость, как и неразрешимость всех известных неразрешимых проблем, заранее отнюдь не очевидна. Гипотеза Гольдбаха о том, что любое четное число представимо в виде суммы двух простых чисел, пока не доказана. Она может оказаться неразрешимой в системе аксиом арифметики, но ее неразрешимость, конечно, не очевидна. Не исключено, что когда-нибудь гипотезу Гольдбаха удастся доказать или опровергнуть.
Не успели математики оправиться от потрясений, вызванных теоремой Гёделя о неполноте и о невозможности доказать непротиворечивость арифметики, как через десять лет возникла новая серьезная угроза развитию математики. И опять «виной» тому был Гёдель, который явился инициатором серии исследований, которые внесли еще большую неразбериху в вопрос о том, что такое математика, имеющая под собой надежную основу, и в каком направлении она может развиваться. Напомним, что сторонники одного из подходов к основаниям математики, возникшего в начале XX в., намеревались построить математику, исходя из теории множеств (гл. XI); с этой целью была разработана система аксиом Цермело — Френкеля.
В работе «Совместимость аксиомы выбора и обобщенной гипотезы континуума с аксиомами теории множеств» (1940) Гёдель доказал, что если система аксиом Цермело — Френкеля без аксиомы выбора непротиворечива, то добавление аксиомы выбора не нарушает непротиворечивости, т.е. аксиома выбора в рамках этой аксиоматики не может быть доказана. Аналогично он установил, что предположение Кантора — гипотеза континуума о том, что не существует кардинальных чисел, заключенных между N0 и 2N0 (т.е. кардинальным числом c, соответствующим множеству всех вещественных чисел), или, иначе говоря, что не существует несчетного множества действительных чисел с кардинальным числом, меньшим 2N0, и обобщенная гипотеза континуума{142} не противоречит системе аксиом Цермело — Френкеля, даже если последнюю дополнить аксиомой выбора. Другими словами, гипотезу континуума как в обычном, так и в обобщенном варианте нельзя опровергнуть. Для доказательства своих утверждений Гёдель построил модели, в которых оба утверждения выполняются.
Непротиворечивость обоих утверждений — аксиомы выбора и гипотезы континуума — несколько обнадежила математиков: обеими теоремами можно было пользоваться по крайней мере с не меньшей уверенностью, чем остальными аксиомами Цермело — Френкеля.
Однако благодушие математиков (если только оно действительно было) быстро развеяли последующие события. Результаты Гёделя не исключали возможности того, что аксиома выбора и гипотеза континуума — порознь или вместе — могут быть доказаны на основе остальных аксиом Цермело — Френкеля. Мысль о том, что по крайней мере аксиому выбора невозможно вывести из остальных аксиом Цермело — Френкеля, была высказана еще в 1922 г. Тогда же и несколько позднее некоторые ученые, в том числе и Френкель, доказали независимость аксиомы выбора, но каждый из них счел необходимым дополнить систему Цермело — Френкеля вспомогательной аксиомой, которая, собственно, и позволила им осуществить доказательство. Примерно такое же возражение выдвигалось и против более поздних доказательств. В 1947 г. Гёдель предположил, что гипотеза континуума независима от аксиом Цермело — Френкеля и от аксиомы выбора.
В 1963 г. профессор математики Станфордского университета Пол Коэн (р. 1934) доказал, что и аксиома выбора, и гипотеза континуума независимы от остальных аксиом Цермело — Френкеля, если те непротиворечивы, т.е. иначе говоря, аксиома выбора и гипотеза континуума не могут быть доказаны на основе остальных аксиом Цермело — Френкеля. Более того, гипотеза континуума и тем более обобщенная гипотеза континуума не могут быть доказаны в системе Цермело — Френкеля, даже если ее дополнить аксиомой выбора. (Аксиома выбора следует из системы аксиом Цермело — Френкеля, не содержащей аксиомы выбора, но дополненной обобщенной гипотезой континуума.) Эти два результата по независимости означают, что в системе Цермело — Френкеля аксиома выбора и гипотеза континуума неразрешимы. В частности, для гипотезы континуума результат Коэна означает, что может существовать трансфинитное число, заключенное между N0 и 2N0 (или c), хотя такое трансфинитное число не соответствует ни одному известному множеству.
В принципе метод Коэна, получивший название метода форсинга, не отличался от других доказательств независимости.{143} Напомним, что для доказательства независимости аксиомы Евклида о параллельных на основе остальных аксиом евклидовой геометрии требуется найти интерпретацию, или модель, которая удовлетворяла бы всем остальным аксиомам, кроме аксиомы о параллельных.{144} Такая модель должна быть непротиворечивой, так как в противном случае она может также удовлетворять аксиоме, независимость которой нас интересует. В своем доказательстве Коэн усовершенствовал более ранние работы Френкеля, Гёделя и других авторов, использовав без каких-либо вспомогательных условий только аксиомы Цермело — Френкеля. Доказательства независимости аксиомы выбора, хотя и менее удовлетворительные, были известны до Коэна, но вопрос о независимости гипотезы континуума до появления его работы оставался открытым.
Приступая к построению математики на основе теории множеств (или даже на логистической или формалистской основе), можно выбрать ту или иную из возможных исходных позиций. Можно запретить себе использовать аксиому выбора и гипотезу континуума. Приняв такое решение, мы ограничим круг теорем, доказываемых в рамках системы. «Основания математики» не включают аксиому выбора в число основных логических принципов, но при доказательстве теорем используют ее, формулируя в явном виде. В современной математике это главное. Можно поступить иначе и включить в число аксиом системы либо аксиому выбора, либо гипотезу континуума, либо оба утверждения вместе. Можно заменить отрицаниями либо одно утверждение, либо другое, либо оба. Отрицая аксиому выбора, можно отказаться от процедуры явного выбора представителей даже для счетной совокупности множеств. Отрицая гипотезу континуума, можно предположить, что 2N0 = N2 или что 2N0 = N3. Именно так, по существу, и поступил Коэн при построении своей модели.
Сказанное означает, что существует не одна, а много математик. Теория множеств (рассматриваемая отдельно от остальных оснований математики) может развиваться во многих направлениях (ср. [17]*). Кроме того, аксиому выбора можно использовать либо лишь для конечного числа множеств, либо для конечной, или счетной, совокупности множеств, либо для любой совокупности множеств. Все эти возможные варианты были реализованы разными математиками.
С появлением коэновских доказательств независимости математика оказалась в еще более затруднительном положении, чем это было при создании неевклидовой геометрии. Как мы уже говорили (гл. VIII), осознав независимость аксиомы Евклида о параллельных от остальных аксиом евклидовой геометрии, математики сумели построить несколько неевклидовых геометрий. Результаты Коэна поставили математиков перед проблемой выбора: какому из многочисленных вариантов двух аксиом (аксиомы выбора и гипотезы континуума) следует отдать предпочтение перед другими? Даже если ограничиться теоретико-множественным подходом к математике, число возможных вариантов оказывается ошеломляюще большим.
Остановить свой выбор на одном из многих вариантов нелегко, так как в любом случае принятие определенной редакции аксиом имеет свои и положительные, и отрицательные стороны. Отказ от любого использования аксиомы выбора и гипотезы континуума, т.е. как от самих аксиом, так и от их отрицаний, как мы уже отмечали, резко сужает круг утверждений, которые могут быть доказаны в рамках определенной формальной системы, и вынуждает отказаться от многих фундаментальных результатов современной математики. Аксиома выбора необходима даже для доказательства того, что любое бесконечное множество S содержит счетное или несчетное бесконечное собственное подмножество. Теоремы, доказательства которых требуют использования аксиомы выбора, играют важную роль в современном математическом анализе, топологии, абстрактной алгебре, теории трансфинитных чисел и в других областях математики. Отказ от аксиомы выбора связал бы математику по рукам и ногам.
С другой стороны, принятие аксиомы выбора позволяет доказывать теоремы, мягко говоря, противоречащие интуиции. Одна из таких теорем известна под названием парадокса Банаха — Тарского. В нестрогой формулировке эта удивительная теорема звучит следующим образом. Пусть даны два шара — один размером с футбольный мяч, другой — размером с Землю. Оба шара можно разбить на конечное число неперекрывающихся частей так, что каждая часть одного шара будет конгруэнтна одной, и только одной, части другого шара. Иначе говоря, теорема Банаха — Тарского означает, что, разрезав земной шар на мелкие кусочки и пересложив их в другом порядке, мы можем получить футбольный мяч. Ранее, в 1914 г., был получен еще один парадоксальный результат (составляющий на самом деле частный случай парадокса Банаха — Тарского): было доказано, что, разбив шар на четыре части, мы можем переложить эти части так, что получатся два шара того же радиуса, что и исходный шар. В отличие от парадоксов, с которыми столкнулась в начале XX в. теория множеств, парадокс Банаха — Тарского и его ранее известный частный случай не являются противоречиями. Это логические следствия из аксиом теории множеств и аксиомы выбора.
Отказ от общей аксиомы выбора приводит к странным следствиям. Один узкоспециальный результат, говорящий математикам несравненно больше, чем нематематикам, состоит в том, что каждое линейное множество измеримо. Иными словами, поскольку из аксиомы выбора следует существование неизмеримых множеств, аксиому выбора можно отрицать, предполагая, что каждое линейное множество измеримо. Для трансфинитных кардинальных чисел отрицание аксиомы выбора порождает другие странные следствия. Что же касается гипотезы континуума, то тут совершенно неизвестно, к каким важным следствиям может привести как принятие, так и отрицание аксиомы выбора. Но если предположить, что 2N0 = N2, то каждое множество вещественных чисел становится измеримым. Можно вывести много других новых следствий, но ни одно из них не имеет решающего значения.
Подобно тому как работа над аксиомой о параллельных привела к расчленению единого потока развития геометрии на множество рукавов, доказанная Коэном независимость аксиомы выбора и гипотезы континуума сделала реальной возможность раздробления математики — (прежде всего теоретико-множественной, хотя результаты Козна затронули и другие направления в основаниях математики) на множество различных направлений. Каждое из таких направлений вполне приемлемо, и не существует видимых причин для того, чтобы отдать предпочтение одному направлению перед другим. После выхода в свет работы Коэна (1963) было обнаружено немало новых утверждений, неразрешимых в системе Цермело — Френкеля; поэтому число способов, которыми можно выбирать аксиомы теории множеств, комбинируя аксиоматику Цермело — Френкеля с тем или иным (либо несколькими) неразрешимым утверждением, поистине безгранично. Доказательство независимости аксиомы выбора и гипотезы континуума буквально потрясло математиков: их изумление можно разве лишь сравнить с тем чувством, которое испытал бы современный архитектор, если бы его убедили, что, внеся небольшие изменения в чертежи, по которым он строит учреждение, он может соорудить по ним средневековый рыцарский замок.
Ныне математики, работающие в области теории множеств, надеются, что, модифицировав разумным образом аксиоматику этой части математики, они смогут выяснить, выводимы ли из общепринятого варианта аксиом теории множеств аксиома выбора и гипотеза континуума — каждая в отдельности или обе вместе. По мнению Гёделя, их надежды отнюдь не безосновательны. В этом направлении было предпринято немало усилий, однако пока они не увенчались успехом. Возможно, что когда-нибудь математики все же придут к единому мнению относительно того, какими аксиомами надлежит здесь пользоваться.
Математический мир был потрясен не только работами Гёделя, Черча и Коэна. Последующие годы умножили заботы математиков. Исследования, начатые в 1915 г. Леопольдом Левенгеймом (1878-1940), а затем усовершенствованные и завершенные Торальфом Сколемом (1887-1963) в серии работ, осуществленных в 1920-1933 гг., выявили новые изъяны в математике. Суть теоремы, получившей название теоремы Левенгейма — Сколема, сводится к следующему. Предположим, что составлена система аксиом (логических и математических) для какой-то области математики или теории множеств, которая рассматривается как основа всей математики. Наиболее подходящим примером, пожалуй, может служить система аксиом для целых чисел. Составляя ее, математики стремились к тому, чтобы эти аксиомы полностью описывали положительные целые числа, и только целые числа, но, к своему удивлению, обнаружили совершенно иные интерпретации, или модели, тем не менее удовлетворяющие всем аксиомам. Например, в то время как множество целых чисел счетно, т.е. — если воспользоваться обозначениями Кантора — существует N0 целых чисел, в других интерпретациях возникают множества, содержащие столько же элементов, сколько их содержит множество всех вещественных чисел, и множества, отвечающие еще большим трансфинитным числам. Происходит и обратное. Так, предположим, что некий математик составил систему аксиом для теории множеств таким образом, что они позволяют описывать и описывали несчетные совокупности множеств. Нередко он обнаруживает счетную (перечислимую) совокупность множеств, удовлетворяющую всем аксиомам, и другие трансфинитные интерпретации, совершенно отличные от тех, которые он имел в виду, составляя свою систему аксиом. Более того, выяснилось, что каждая непротиворечивая система аксиом допускает счетную модель.
Что это означает? Предположим, кому-то пришла в голову мысль составить перечень характерных черт, присущих, по его мнению, американцам, и только американцам. К своему удивлению, в действительности он обнаруживает людей, обладающих всеми перечисленными им отличительными особенностями американцев и сверх того наделенных множеством собственных специфических черт. Иначе говоря, система аксиом, составленная для описания одного-единственного класса математических объектов, явно не соответствует своему назначению. Теорема Гёделя о неполноте свидетельствует о том, что любая система аксиом не позволяет доказать (или опровергнуть) все теоремы той области математики, для описания которой данная система аксиом предназначена. Теорема Левенгейма — Сколема утверждает, что любая система аксиом допускает намного больше существенно различных интерпретаций, чем предполагалось при ее создании. Аксиомы не устанавливают пределов для интерпретаций, или моделей. Следовательно, математическую реальность невозможно однозначно включить в аксиоматические системы.{145}
Одна из причин появления «побочных» интерпретаций состоит в том, что в каждой аксиоматической системе имеются неопределяемые понятия. Ранее считалось, что аксиомы неявно «определяют» эти понятия. В действительности же одних аксиом недостаточно. Следовательно, неопределяемые понятия могут трансформироваться каким-то заранее непредсказуемым образом.
Теорема Левенгейма — Сколема не менее удивительна, чем теорема Гёделя о неполноте. Она нанесла еще один удар по аксиоматическому методу, который с начала XX в. и вплоть до недавнего времени считался единственно разумным подходом и который поныне используется логицистами, формалистами и представителями теоретико-множественного направления.
Теорему Левенгейма — Сколема, однако, нельзя считать полностью неожиданной. Действительно, теорема Гёделя о неполноте утверждает, что каждая аксиоматическая система неполна. Существуют неразрешимые утверждения. Пусть p — одно из таких утверждений. Ни p, ни его отрицание — утверждение «не p» — не вытекает из аксиом. Следовательно, мы могли бы исходить из более широкой системы аксиом, включив в нее либо исходную систему аксиом и p, либо исходную систему аксиом и «не p». Эти две системы аксиом существенно различны, поскольку их интерпретации не могут быть изоморфными. Иначе говоря, из неполноты следует некатегоричность. Но теорема Левенгейма — Сколема содержит гораздо более сильное и радикальное отрицание категоричности. Она утверждает, что и без введения какой-либо дополнительной аксиомы существуют принципиально различные (неизоморфные) интерпретации, или модели. Разумеется, аксиоматическая система непременно должна быть неполной, ибо в противном случае неизоморфные интерпретации были бы невозможны.
Анализируя собственный результат, Сколем в работе 1923 г. пришел к выводу о непригодности аксиоматического метода в качестве основы для теории множеств. Даже Джон фон Нейман был вынужден признать в 1925 г., что на предложенных им и другими авторами системах аксиом теории множеств лежит «печать нереальности… Категорическая аксиоматизация теории множеств не существует… А поскольку нет ни одной аксиоматической системы для математики, геометрии и т.д., которая не предполагала бы теорию множеств, заведомо не существуют категоричные аксиоматические бесконечные системы». Это обстоятельство, продолжает Нейман, «свидетельствует, как мне кажется, в пользу интуиционизма».
Математики пытались успокоить себя, вспоминая историю с неевклидовой геометрией. Когда после многовековой борьбы с аксиомой параллельности Лобачевский и Бойаи предложили свою неевклидову геометрию, а Риман указал еще одну неевклидову геометрию, математики сначала были склонны отмахнуться от новых геометрий, ссылаясь при этом на ряд причин. Одной из них было бездоказательное утверждение о возможной противоречивости новых геометрий. Однако, как показали найденные впоследствии интерпретации, неевклидовы геометрии оказались непротиворечивыми. Например, удвоенную эллиптическую геометрию Римана, которая по замыслу автора должна была относиться к фигурам на обычной плоскости, удалось интерпретировать как геометрию фигур на поверхности сферы, т.е. она обрела модель, существенно отличную от исходной авторской интерпретации (гл. VIII). Открытие новой модели, или интерпретации, было встречено с энтузиазмом, что вполне понятно: ведь существование такой модели доказало непротиворечивость геометрии. Кроме того, новая модель не приводила ни к каким расхождениям в числе объектов — точек, линий, плоскостей, треугольников и т.д. — по сравнению с исходной авторской интерпретацией. Выражаясь языком математики, обе интерпретации были изоморфны. Теорема Левенгейма — Сколема охватывает неизоморфные, существенно различные интерпретации аксиоматических систем.
Говоря об абстрактности математического мышления, Пуанкаре как-то заметил, что математика — это искусство давать различным вещам одинаковые названия. Так, понятие группы отражает свойства целых чисел и матриц относительно сложения, а также геометрических преобразований и других математических объектов. Теорема Левенгейма — Сколема подтверждает высказывание Пуанкаре, но придает ему обратный смысл. Аксиомы групп отнюдь не предназначены для того, чтобы указывать на необходимость одинакового объема и характера всех мыслимых интерпретаций (поэтому аксиомы групп не являются категоричными, как и аксиомы евклидовой геометрии, если опустить аксиому о параллельных). Аксиоматические системы, к которым применима теорема Левенгейма — Сколема, предназначаются для задания одной вполне конкретной интерпретации, и, будучи применимыми к совершенно различным моделям, они тем самым не соответствуют своему назначению.
Кого боги вздумают погубить, того они прежде всего лишают разума. Возможно, боги сочли, что после работ Гёделя, Коэна, Левенгейма и Сколема математикам еще удалось сохранить остатки разума, — и подстроили новую ловушку, чтобы довести тех до полного безумия. Развивая свой вариант дифференциального и интегрального исчисления, Лейбниц ввел величины, названные им инфинитезимальными или бесконечно малыми (гл. VI). Бесконечно малая, по Лейбницу, отлична от нуля, но меньше 0,1, 0,01, 0,001 и любого другого положительного члена. Лейбниц утверждал также, что с бесконечно малыми величинами надлежит обращаться так же, как с обычными числами. Бесконечно малые величины были идеальными элементами, фикциями, однако приносили вполне ощутимую реальную пользу. Отношение двух бесконечно малых, по Лейбницу, определяло производную — одно из основных понятий математического анализа. И с бесконечно большими величинами Лейбниц обращался так же, как с обычными числами.
На протяжении всего XVIII в. математики вели борьбу с понятием бесконечно малой величины, производили с бесконечно малыми действия по произвольным, ничем не обоснованным и даже противоречащим логике правилам и в конце концов отвергли бесконечно малые величины как лишенные всякого смысла. Коши своими трудами не только наложил запрет на бесконечно малые величины, но и вообще ликвидировал необходимость обращения к ним. Тем не менее поиск законных оснований для использования бесконечно малых исподволь продолжался. На вопрос Гесты Миттаг-Леффлера (1846-1927), не могут ли кроме рациональных и всех вещественных чисел (и, так сказать, «между» этими двумя классами чисел) существовать числа иного рода, Кантор дал резко отрицательный ответ. В 1887 г. он опубликовал работу, где доказал логическую невозможность существования бесконечно малых, основываясь, по существу, на так называемой аксиоме Архимеда, утверждающей, что для любого вещественного числа a найдется такое целое число n, при котором величина na будет больше любого наперед заданного вещественного числа b. Пеано также опубликовал работу, в которой доказывал, что бесконечно малые величины не существуют. К такому же выводу пришел в своих «Принципах математики» (1903) и Бертран Рассел.
Но даже суждения великих людей не следует принимать с поспешностью. Во времена Аристотеля, да и значительно позже, многие мыслители отвергали представление о шарообразности Земли как лишенное смысла на том основании, что в таком случае наши «антиподы» должны были бы ходить по земле вниз головой. Однако сколь ни «убедительны» были их доводы, Земля, как оказалось, все же имеет шарообразную форму. Аналогичным образом, несмотря на все доказательства, изгонявшие лейбницевские бесконечно малые из математики, некоторые исследователи упорно пытались создать логическую теорию бесконечно малых.
Поль Дюбуа-Реймон, Отто Штольц и Феликс Клейн были уверены в осуществимости построения непротиворечивой теории на основе понятия бесконечно малой. Более того, Клейн указал, от какой именно аксиомы вещественных чисел (аксиомы Архимеда) необходимо отказаться, чтобы такая теория стала возможной. В 1934 г. Сколем ввел новые числа (получившие название гипервещественных), отличные от обычных вещественных чисел, и установил некоторые их свойства. Кульминацией исследований некоторых математиков в этой области стало создание новой теории, узаконившей бесконечно малые. Наиболее существенный вклад внес в эту теорию Абрахам Робинсон (1918-1974).
Новая система — так называемый нестандартный анализ (ср. элементарную брошюру [85] или учебники [76]*, [86] и [87]) — вводит гипервещественные числа, включающие в себя обычные («старые») вещественные числа и бесконечно малые. Последние определяются практически так же, как у Лейбница: положительная бесконечно малая есть число, которое меньше любого обычного положительного вещественного числа, но больше нуля{146} (аналогично отрицательная бесконечно малая больше любого отрицательного вещественного числа, но меньше нуля). Бесконечно малые в нестандартном анализе являются фиксированными числами, а не переменными величинами в смысле Лейбница и не переменными величинами, стремящимися к нулю, как понимал иногда бесконечно малые величины Коши и как понимают их сегодня в стандартных учебниках «высшей математики». Кроме того, нестандартный анализ вводит новые бесконечные элементы, обратные бесконечно малым, но не являющиеся трансфинитными числами Кантора. Каждое конечное гипервещественное число r представимо в виде x + ?, где x — обычное вещественное число, а ? — бесконечно малая.
Понятие бесконечно малого элемента позволяет говорить о бесконечно близких гипервещественных числах. Два гипервещественных числа называются бесконечно близкими, если их разность бесконечно мала. Следовательно, каждое гипервещественное число бесконечно близко некоторому (обычному) вещественному числу, так как разность между ними бесконечно мала. Обращаться с гипервещественными числами можно так же, как с обычными вещественными числами.{147}
Новая система гипервещественных чисел позволяет вводить функции, принимающие обычные вещественные или гипервещественные значения. На языке гипервещественных чисел можно по-новому определить непрерывность функции: функция f(x) непрерывна при x = a, если разность f(x) ? f(a) бесконечно мала, когда бесконечно мала разность x ? a. Гипервещественные числа позволяют ввести определения производной и других понятий математического анализа и доказать все теоремы анализа. Но главное состоит в том, что в системе гипервещественных чисел обретает точность и доказательность подход к построению анализа, который ранее отвергался как недостаточно ясный и даже бессмысленный.{148}
В какой мере система гипервещественных чисел способствует увеличению мощи математики? Пока введение гипервещественных чисел не привело к сколько-нибудь значительным новым результатам.{149} Важно другое: нестандартный анализ открыл новый путь, по которому одни математики пойдут охотно (уже появилось несколько книг по нестандартному анализу), тогда как другие по тем или иным причинам его отвергнут. С появлением нестандартного анализа с облегчением вздохнули лишь физики, поскольку они, невзирая на запрет Коши, всегда широко пользовались бесконечно малыми (впрочем, их привычки здесь столь устойчивы, что пока они не уделили особенно большого внимания «новому» анализу).
Развитие оснований математики с начала XX в. протекает поистине драматически, и современное состояние математики по-прежнему весьма плачевно, что вряд ли можно считать нормальным. Свет истины более не освещает путь, по которому следовало бы двигаться. Вместо единой, вызывавшей общее восхищение и одинаково приемлемой для всех математической науки, доказательства которой считались наивысшим достижением здравого смысла, хотя порой и нуждались в коррекции, мы имеем теперь различные, конфликтующие между собой подходы к математике. Несколько взаимоисключающих подходов имеется в рамках одного лишь теоретико-множественного направления, не говоря уже о существовании других самостоятельных направлений: логицизма, интуиционизма и формализма. В этих школах также выделяются различные и даже конфликтующие подходы. Так, конструктивистское направление, возникшее в недрах интуиционизма, разделилось на множество группировок. В рамках формализма принципы математики могут быть выбраны по-разному. Нестандартный анализ, не будучи порождением какой-либо одной школы, допускает различные подходы ко многим проблемам математического анализа, в свою очередь приводящие к различным и даже противоположным точкам зрения. То, что считается алогичным и отвергается одной школой, другая объявляет здравым и вполне приемлемым.
Итак, все попытки исключить возможные противоречия и доказать непротиворечивость математических построений до сих пор не увенчались успехом. Между математиками нет более единого мнения относительно того, принимать аксиоматический подход (и если принимать, то какой системе аксиом отдать предпочтение) или остановиться на неаксиоматическом интуиционистском подходе. Большинство современных математиков склонны рассматривать свою науку как совокупность различных аксиоматически определяемых структур, с одной стороны, позволяющих охватить все, что должно входить в математику, а с другой — охватывающих больше, чем положено. Современные математики расходятся во мнениях даже относительно того, какие методы рассуждений следует считать допустимыми. Закон исключенного третьего ныне не принадлежит к числу бесспорных принципов логики, и чистые доказательства существования, не дающие готового рецепта вычисления той величины, существование которой доказывается, ставятся под сомнение независимо от того, используется или не используется в них закон исключенного третьего. От претензий на безупречную доказательность своих рассуждений математикам пришлось отказаться. Возможность неоднозначного выбора аксиоматики и подходов привела к возникновению различных математик. Последние исследования в области оснований математики дошли до той черты, за которой открывается лишь первозданный хаос.
Интуиционисты представляли единственное направление в математике, сохранившее самообладание и выдержку в 30-е годы, когда описанные выше результаты сломили логицистов, формалистов и сторонников теоретико-множественного направления. Игра с логическими символами и принципами, захватившая умы гигантов математической науки, для интуиционистов была пустой забавой. "Непротиворечивость математики очевидна, считали они, ибо ее гарантирует человеческий разум, постигающий истины на интуитивном уровне. Аксиому выбора и гипотезу континуума интуиционисты отвергали как неприемлемые, о чем заявил еще в 1907 г. Брауэр. Неполнота и существование неразрешимых утверждений не беспокоили интуиционистов, ибо они могли с полным основанием сказать представителям других направлений: «А что мы вам говорили?» Но даже интуиционисты неохотно отказывались от разделов математики, возникших еще в XIX в., но не удовлетворявших их требованиям. Интуиционисты считали неприемлемым доказывать существование математических объектов с помощью закона исключенного третьего и объявляли удовлетворительными только такие доказательства, которые позволяли сколь угодно точно вычислять величину, существование которой доказывается. Иначе говоря, интуиционисты боролись за конструктивные доказательства существования.
Итак, ни одна школа не имела права претендовать на то, что она представляет математику в целом. К сожалению, как отметил в 1960 г. Аренд Рейтинг, начиная с 30-х годов дух дружеского сотрудничества между школами уступил место духу непримиримого соперничества.
В 1901 г. Бертран Рассел сказал: «Один из величайших триумфов математики состоит в открытии того, что представляет собой математика в действительности». Ныне эти слова поражают нас своей наивностью. Уже сегодня различные школы по-разному воспринимают математику как таковую, и в будущем это различие в подходах, по-видимому, только усилится. Существующие ныне школы каждая по-своему пытались обосновать современную математику. Но если заглянуть в прошлое и вспомнить об аптечной математике, а также о математике XVII и XIX вв., то происшедшие изменения, разительные и драматические, станут особенно заметными. Представители некоторых современных школ в основаниях математики пытались подвести надежный фундамент под математику начала XX в. Быть может, их результаты послужат математике XXI в.? Интуиционисты воспринимают математику как живой и развивающийся организм. Но предсказывала ли их «интуиция» что-нибудь такое, с чем математикам не приходилось сталкиваться в прошлом? Даже в 30-е годы отрицательный ответ на такой вопрос заведомо не соответствовал бы истине. Следовательно, производимые время от времени пересмотры оснований математики просто необходимы.
Наш рассказ о событиях, развернувшихся в основаниях математики в XX в., мы хотели бы закончить следующей притчей. На берегах Рейна в течение многих веков возвышался прекрасный замок. Пауки, обитавшие в подвалах замка, затянули паутиной все его проходы. Однажды сильный порыв ветра разрушил тончайшие нити паутины, и пауки принялись поспешно восстанавливать образовавшиеся бреши: они считали, что замок держится на их паутине!