VIII Нелогичное развитие: у врат рая
Можно сказать, что ныне достигнута абсолютная строгость.{85}
Анри Пуанкаре
Основатели так называемого критического движения в математике сознавали, что на протяжении более двух тысячелетий математики бродили в непролазных дебрях интуитивных представлений, правдоподобных аргументов, индуктивных рассуждений и формального манипулирования символами. Они предложили подвести прочный логический фундамент под те разделы математики, где он отсутствовал, исключить противоречия и те понятия, которые не имели четких определений, а также усовершенствовать обоснование таких разделов математики, как евклидова геометрия. Осуществление этой программы началось в 20-х годах XIX в., хотя в тот период критическое движение затронуло лишь немногих математиков. Когда исследования по неевклидовой геометрии приобрели более широкую известность, это, естественно, весьма стимулировало критическое движение, поскольку были обнаружены существенные изъяны в структуре евклидовой геометрии: стало очевидным, что даже эта часть математики, слывшая нерушимым оплотом и недосягаемым эталоном «истинной» строгости, нуждается в критическом пересмотре. А вскоре (1843) создание кватернионов поставило под сомнение уверенность, с которой математики обращались с вещественными и комплексными числами. Разумеется, многие математики по-прежнему пользовались нестрогими рассуждениями и, получая правильные результаты, убеждали себя в том, что как их доказательства, так и представления, изложенные на страницах учебников по математике, вполне обоснованны и логичны. Однако теперь подобной самоуверенностью страдали далеко не все.
Прекрасно понимая, что от претензий математики на роль носительницы абсолютных истин о реальном мире необходимо отказаться, критически мыслившие математики в то же время отдавали должное колоссальным достижениям своей науки в механике, акустике, гидродинамике, теории упругости, оптике, теории электромагнетизма, а также во многих отраслях техники; они по достоинству оценивали исключительную точность даваемых математикой предсказаний в этих областях. Математика сражалась под непобедимым знаменем истины, но одерживать победы ей позволяла какая-то скрытая и даже таинственная сила. Необычайная эффективность математических методов в естествознании, разумеется, нуждалась в объяснении (гл. XV), но отрицать мощь математики как инструмента познания и отмахиваться от нее не осмеливался никто. Без сомнения, эту мощь не следовало подрывать, погружаясь в лабиринты логических трудностей и противоречий. И хотя математики, поступившись строгими обоснованиями, нарушили собственные принципы доказательности, в их намерения отнюдь не входило навсегда оставлять математику на прагматической основе. На карту был поставлен престиж математиков, ибо как иначе они могли провести грань, отделяющую их возвышенную деятельность от прозаической работы инженеров и ремесленников?
И некоторые математики вознамерились еще раз пройти по едва различимым следам прошлого, оставленным в процессе бурного развития своей науки, и проложить надежные пути к тому, что уже достигнуто. Свои усилия они решили прежде всего направить на построение (или критическую перестройку) оснований математики.
Чтобы привести в порядок здание математики, требовались решительные и крутые меры. К тому времени уже стало ясно, что не существует твердой почвы, на которой можно было бы без опасений заложить фундамент математики: столь надежная на первый взгляд опора на истину оказалась обманчивой. Но, может быть, гигантское здание математики станет устойчивым, если под него подвести прочный фундамент иного рода, представляющий собой полную систему четко сформулированных аксиом, определений и явных доказательств всех результатов, сколь бы интуитивно очевидными они ни казались? Основной акцент делался не на истинность утверждений, а на их логическую совместимость, т.е. непротиворечивость. Теснейшая зависимость между аксиомами и теоремами должна была придать устойчивость всему зданию математики. Отдельные части этого здания оказались бы накрепко стянутыми скрепами независимо от того, насколько прочно само оно опирается на землю. Так колеблется под напором ветра гигантский небоскреб, оставаясь тем не менее единой, цельной конструкцией от крыши до фундамента.
Математики начали с оснований математического анализа. Но поскольку математический анализ предполагает использование арифметики вещественных чисел и алгебры, не имевших обоснования, нелогичность такого шага станет более очевидной, если обратиться к следующей аналогии. Представьте себе, что владелец пятидесятиэтажного дома со множеством жильцов, битком набитого мебелью и различной утварью, узнав о шаткости здания, решает перестроить его — и начинает капитальный ремонт с двадцатого этажа!
Но при всей кажущейся нелогичности выбор отправной точки для перестройки математики все же имел объяснение. К началу XIX в. различные типы чисел стали настолько привычными, что, хотя их использование и не было обосновано в рамках формальной логики, сами по себе свойства чисел не вызывали никаких сомнений. Не возникало трудностей и с применением евклидовой геометрии, хотя она и утратила ореол непогрешимости: безотказное служение человечеству на протяжении двух тысячелетий вселяло уверенность в те ее положения, которые не удавалось обосновать с помощью логики. Однако математический анализ был постоянной мишенью для критики. В этом обширном разделе математики встречались нестрогие доказательства, парадоксы и даже противоречия. К тому же многие результаты не были подкреплены даже практически.
В начале XIX в. проблема строгого обоснования математического анализа привлекла внимание трех мыслителей: священника, философа и математика Бернарда Больцано, Нильса Хенрика Абеля и Огюстена Луи Коши. К сожалению, Больцано жил в Праге, и его работы долгие годы оставались неизвестными. Абель умер в возрасте 27 лет и не успел продвинуться в обосновании анализа сколько-нибудь существенно. Коши работал в Париже, столице математического мира того времени, и к 20-м годам XIX в. имел репутацию одного из величайших математиков мира. Именно поэтому его заслуги в движении за обоснование математики получили наибольшее признание, именно поэтому он оказал наибольшее влияние на своих современников.
Коши решил построить обоснование математического анализа на понятии числа. Почему именно это понятие привлекло его внимание? Англичане, следуя Ньютону, пытались обосновать математический анализ, используя геометрию, — и потерпели неудачу. Коши понимал, что геометрия не может служить основой математического анализа. К тому же математики континентальной Европы, следуя Лейбницу, всегда использовали аналитические методы. Кроме того, хотя к 20-м годам XIX в. работы по неевклидовой геометрии не получили еще широкой известности, математики, по-видимому, были достаточно наслышаны о них, что побуждало их относиться к геометрии с некоторым недоверием. С другой стороны, в царстве чисел математики чувствовали себя достаточно уверенно вплоть до 1843 г., когда Гамильтон создал свои кватернионы; впрочем, даже это знаменательное событие первоначально не вызвало ни малейшего сомнения в том, что с вещественными числами все обстоит благополучно.
Коши поступил весьма мудро, решив построить математический анализ на понятии предела. Как это неоднократно случалось в истории математики, избранный Коши правильный подход уже предлагался ранее некоторыми проницательными умами. Еще в XVII в. Джон Валлис в «Арифметике бесконечно малых» (1655) и шотландский профессор Джеймс Грегори в «Истинной квадратуре окружности и гиперболы» (1667), а затем в XVIII в. Д'Аламбер со всей определенностью указали на понятие предела как на наиболее подходящую основу построения анализа.{86} Особое значение имели взгляды Д'Аламбера, базировавшиеся на трудах Ньютона, Лейбница и Эйлера. Свое понимание предела Д'Аламбер отчетливо сформулировал в статье «Предел», написанной для «Энциклопедии» (1751-1765):
Говорят, что одна величина есть предел другой величины, если вторая величина может приблизиться к первой настолько, что будет отличаться от нее меньше чем на любую заранее заданную сколь угодно малую величину, хотя величина, которая стремится к другой величине, никогда не может превзойти ее…{87}
Теория пределов составляет основу истинной метафизики дифференциального исчисления.
Д'Аламбер написал для «Энциклопедии» также статью «Дифференциал», в которой дал обзор работ Барроу, Ньютона, Лейбница, Ролля и других математиков и утверждал, что дифференциал — бесконечно малая величина, т.е. меньше любой «наперед заданной величины». Д'Аламбер счел нужным пояснить, что использует такую терминологию, следуя установившейся традиции. Что же касается самой терминологии, то она, по мнению Д'Аламбера, отличается еще большей краткостью и неясностью, чем подлежащее определению понятие. Правильная терминология и правильный подход должны быть основаны на понятии предела. Д'Аламбер критиковал Ньютона за то, что тот «объяснял» производную как скорость: ведь ясного представления о мгновенной скорости не существует и такое «объяснение», по мнению Д'Аламбера, вводит в математику чисто физическое понятие — движение. В своем сочинении «Разное» (M?langes, 1767) Д'Аламбер повторил: «Любая величина есть либо нечто, либо ничто. Если величина есть нечто, то ей не дано исчезнуть бесследно. Если величина есть ничто, то она исчезает полностью». Д'Аламбер указал также на понятие предела. Но сам он не развил свою идею о пределе применительно к обоснованию математического анализа, и его современники не смогли оценить ее по достоинству.
Концепцию предела можно также обнаружить в «Размышлениях о метафизике исчисления бесконечно малых» Карно, в работе Люилье от 1786 г., удостоенной премии Берлинской академии наук, и в работе Карно, не получившей премии, но тем не менее удостоенной похвального отзыва той же академии. Весьма возможно, что все эти работы оказали влияние на формирование взглядов Коши. Во всяком случае, во введении к знаменитому ныне «Курсу алгебраического анализа» (Cours d'analyse alg?brique, 1821) Коши высказался со всей определенностью: «Что же касается методов, то я стремился придать им ту степень строгости, которая достижима в математике».
Несмотря на слово «алгебраический», которое Коши вынес в заголовок своего курса, он не разделял традиционной веры в «общность алгебры». Коши имел здесь в виду рассуждения, неявно используемые его современниками: то, что истинно для вещественных чисел, истинно и для комплексных чисел; то, что истинно для сходящихся рядов, истинно и для расходящихся рядов; то, что истинно для конечных величин, истинно и для бесконечно малых величин. Коши очень тщательно определил и установил свойства основных понятий математического анализа: функции, предела, непрерывности, производной и интеграла. Он также ввел различие между бесконечными рядами, имеющими сумму в указанном им смысле, и бесконечными рядами, не имеющими такой суммы, т.е. различие между сходящимися и расходящимися рядами. Последние Коши объявил «вне закона».{88} В октябре 1826 г. Абель имел все основания сообщить в письме своему бывшему учителю Хольмбе, что Коши «в настоящее время единственный, кто знает, как следует действовать в математике». Далее Абель называет Коши глупцом и фанатиком, но замечает, что тот по крайней мере считает необходимым «воздать дьяволу дьяволово».
Хотя Коши поставил своей целью обоснование математического анализа и заявил в переиздании своего курса (1829), что достиг мыслимых пределов строгости, он допустил немало ошибок, впрочем вполне понятных, если учесть тонкость затронутых им понятий. Приведенные Коши определения функции, предела, непрерывности и производной по существу были правильными, но язык, которым ему приходилось пользоваться, не отличался ни ясностью, ни точностью. Подобно своим современникам, Коши был убежден, что из непрерывности следует дифференцируемость (гл. VII), и сформулировал множество теорем, в условиях которых предполагал только непрерывность, тогда как в доказательстве использовал дифференцируемость, причем упорствовал в своих заблуждениях, даже когда ему указывали на ошибку. Введя со всеми необходимыми оговорками определение столь важного понятия, как «определенный интеграл», Коши намеревался показать, что для любой непрерывной функции значение такого интеграла существует и единственно; однако предложенное им доказательство оказалось ошибочным (поскольку Коши не сознавал необходимости введения более тонкого понятия — равномерной непрерывности).{89} Ясно понимая различие между сходящимися и расходящимися рядами, Коши тем не менее неоднократно предлагал неверные теоремы о расходящихся рядах и приводил ошибочные доказательства. Так, он утверждал — и более того, доказывал, — что сумма бесконечного ряда непрерывных функций непрерывна (это верно лишь при условии равномерной непрерывности). Коши почленно интегрировал бесконечные ряды, утверждая, что проинтегрированный ряд соответствует интегралу от функции, представленной исходным рядом (и в этом случае его ошибка была обусловлена непониманием необходимости равномерной сходимости). Коши предложил критерий сходимости последовательности, ныне известный под названием критерия Коши, но не сумел доказать его достаточность, так как для доказательства этого требовалось использовать такие свойства вещественных чисел, которые не были известны ни Коши, ни его современникам. Коши был также убежден, что если функция двух переменных имеет в некоторой точке предел, когда каждая из переменных в отдельности стремится к точке, то эта функция должна стремиться к пределу и в том случае, когда обе переменные изменяются одновременно и (переменная) точка M (x, y) стремится к рассматриваемой точке N (a, b).{90}
С самого начала работы по обоснованию математического анализа носили сенсационный характер. После заседания Парижской академии наук, на котором Коши изложил свою теорию сходимости рядов, Лаплас поспешил домой и оставался там взаперти до тех пор, пока не проверил на сходимость все ряды, которые он использовал в своей «небесной механике». Велика же была его радость, когда он обнаружил, что ряды сходятся.
Как ни парадоксально, сам Коши отнюдь не был склонен сковывать себя требованиями математической строгости. Написав три учебника (1821, 1823 и 1829) главным образом с целью строгого обоснования математического анализа, Коши в своих исследованиях продолжал полностью игнорировать строгость. Дав определение непрерывности, Коши никогда не доказывал, что рассматриваемые им функции непрерывны. Неоднократно подчеркивая важность сходимости рядов и несобственных интегралов, Коши оперировал с бесконечными рядами, преобразованиями Фурье и несобственными интегралами так, словно никаких проблем сходимости не существовало. Определив производную как предел, Коши предложил и чисто формальный подход, аналогичный предложенному Лагранжем (гл. VI). Коши допускал и полусходящиеся (осциллирующие) ряды, например 1 ? 1 + 1 ? 1 + … и перестановку членов в так называемых условно сходящихся рядах (некоторых рядах с положительными и отрицательными членами). Совершал он и другие «преступления», но безошибочная интуиция позволяла ему угадывать истину даже в тех случаях, когда ему не удавалось установить ее в соответствии со стандартами строгости, присущими его же собственным учебникам математического анализа.
Труды Коши вызвали к жизни многочисленные работы по обоснованию математического анализа. Но основной вклад в решение этой важной проблемы был внесен другим выдающимся математиком — Карлом Вейерштрассом (1815-1897). Именно ему суждено было завершить обоснование математического анализа. Результаты своих исследований Вейерштасс начал излагать в лекциях, прочитанных в 1858-1859 гг. в Берлинском университете. Самые ранние из сохранившихся конспектов лекций Вейерштрасса были сделаны его учеником Германом Амандусом Шварцем весной 1861 г. Труды Вейерштрасса полностью освободили математический анализ от какой бы то ни было зависимости от движения, интуитивных представлений и геометрической наглядности, которые во времена Вейерштрасса выглядели уже довольно подозрительно.
К 1861 г. Вейерштрасс отчетливо понимал, что вопреки широко распространенному убеждению (гл. VII) дифференцируемость отнюдь не следует из непрерывности. Мир был потрясен, когда в 1872 г. Вейерштрасс представил Берлинской академии пример функции, непрерывной при всех вещественных x, но не дифференцируемой ни при одном значении x. (Он сам не опубликовал свой пример; это было сделано, разумеется со ссылкой на Вейерштрасса, Полем Дюбуа-Реймоном в 1875 г. Ранее Вейерштрасса примеры непрерывной, но нигде не дифференцируемой функции были с помощью геометрических соображений построены Больцано в 1830 г. и Шарлем Селирье примерно в то же время, но второй из этих примеров был опубликован лишь в 1890 г., а первый — еще позже; в силу этого Больцано и Селирье не оказали влияния на развитие математики.)
То обстоятельство, что Вейерштрасс привел свой пример на позднем этапе развития математического анализа, следует расценивать как удачу, ибо, как сказал в 1905 г. Эмиль Пикар, «если бы Ньютон и Лейбниц знали, что непрерывные функции необязательно должны иметь производные, то дифференциальное исчисление никогда не было бы создано». Строгое мышление может стать препятствием для творческого начала.
Коши и даже Вейерштрасс — в начале своей деятельности по обоснованию математического анализа — рассматривали все свойства вещественных и комплексных чисел как нечто данное, не нуждающееся в обосновании. Первый шаг к логическому обоснованию вещественных и комплексных чисел был сделан в 1837 г. создателем кватернионов Гамильтоном. Гамильтон знал, что комплексные числа можно использовать для представления векторов на плоскости, и пытался найти (гл. IV) числа с тремя единицами, которые могли бы служить представлением векторов в пространстве. Гамильтон стал изучать свойства комплексных чисел с тем, чтобы обобщить их. Одним из результатов, изложенных в его работе «Алгебраические пары, с предварительным очерком о времени», было логическое обоснование комплексных чисел, при построении которого Гамильтон, однако, считал свойства вещественных чисел общеизвестными. Вместо комплексных чисел a + b??1 Гамильтон ввел упорядоченные пары (a, b) вещественных чисел и определил операции над этими парами так, чтобы результаты совпадали с результатами операций, производимых над комплексными числами a + b??1.{91} Следует заметить, что Гамильтону пришлось создавать новую теорию комплексных чисел, поскольку для него, как и для всех его предшественников, были неприемлемы не только символ ??1, но до какого-то времени и отрицательные числа. Позднее в одной из своих работ Гамильтон писал:
Настоящая теория пар опубликована, дабы продемонстрировать скрытый смысл [комплексных чисел] и показать на этом примечательном примере, что выражения, которые все считали чисто символическими и не допускавшими интерпретации, входят в мир идей, обретая реальность и значимость,
Далее в той же статье говорится следующее:
В теории отдельных чисел символ ??1 лишен всякого смысла [курсив Гамильтона] и означает невозможное извлечение корня, или мнимое число, но в теории пар тот же символ ??1 обретает смысл и означает возможное извлечение корня, или вещественную пару, а именно (как мы только что убедились) главное значение квадратного корня из пары (?1, 0). Следовательно, знак ??1 может быть надлежащим образом использован во второй теории, но отнюдь не в первой, и мы можем, если угодно, написать для любой пары (a1, a2)
(a1, a2) = a1 + a2??1
…и интерпретировать символ ??1 в том же выражении как обозначающий вторую единицу, или чисто вторичную пару (0, 1).
Так Гамильтон убрал то, что он назвал «метафизическими камнями преткновения» в системе комплексных чисел.
В свою теорию пар Гамильтон включил и свойства вещественных чисел — пар вида (a, 0). В работе от 1837 г. он попытался логически обосновать систему вещественных чисел. Исходя из понятия времени, Гамильтон вывел свойства положительных целых чисел, а затем распространил эти свойства на рациональные (положительные и отрицательные целые числа и дроби) и иррациональные числа. Но развитая Гамильтоном теория была логически весьма несовершенна и особенно несостоятельна во всем, что касалось иррациональных чисел. Она была не только неясно изложена, но и неверна. Математический мир вполне справедливо просто не заметил эту работу Гамильтона. Интерес Гамильтона к обоснованию вещественных и комплексных чисел был ограниченным. Истинной целью его исследований были кватернионы. Но когда Гамильтону случалось работать в области математического анализа, он, подобно большинству своих современников, без малейших колебаний свободно оперировал свойствами вещественных и комплексных чисел.
Вейерштрасс первым понял, что обоснование математического анализа останется незавершенным, если не добиться более глубокого понимания системы вещественных чисел, и первым предложил строгое определение и вывод свойств иррациональных чисел на основе известных свойств рациональных чисел. Свои исследования Вейерштрасс начал еще в 40-х годах XIX в., но его результаты долгое время оставались неопубликованными; впервые они стали известны лишь из лекций, прочитанных Вейерштрассом в Берлинском университете в 60-е годы.
Некоторые другие математики, прежде всего Рихард Дедекинд и Георг Кантор, также правильно определили иррациональные числа и доказали их свойства, приняв за исходные свойства рациональных чисел. Работы этих математиков были опубликованы в 70-х годах XIX в. Дедекинд, как и в Вейерштрасс, отчетливо сознавал необходимость ясной теории иррациональных чисел для последовательного изложения математического анализа. В небольшой книге «Непрерывность и иррациональные числа» (1872) [46] Дедекинд писал, что начиная с 1858 г. он «острее, чем когда-либо, ощущал отсутствие строгого обоснования арифметики». В работе о теоремах анализа (гл. IX) Кантор также признавал необходимость последовательной теории иррациональных чисел. Работы Вейерштрасса, Дедекинда и Кантора позволили математикам наконец доказать, что ?2??3 = ?6.
Однако логическое обоснование рациональных чисел по-прежнему отсутствовало. Дедекинд понимал это и в работе «Что такое числа и для чего они служат» (1888) [47] описал основные свойства чисел, которые могли бы стать основой аксиоматического подхода к рациональным числам. Джузеппе Пеано (1858-1932), используя идеи Дедекинда и некоторые идеи, заимствованные из «Учебника арифметики» (1861) Германа Грассмана, построил в работе «Элементы арифметики» (1889) теорию рациональных чисел из аксиом, описывающих свойства положительных целых — (натуральных) чисел.{92} Наконец логическая структура систем вещественных и комплексных чисел была создана.
Как побочный результат обоснования числовой системы была решена проблема обоснования привычной всем алгебры. Почему, свободно манипулируя символами так, как если бы они были натуральными числами, мы получаем верные результаты и в том случае, если вместо символов подставляем вещественные или комплексные числа? Это происходит потому, что вещественные и комплексные числа обладают такими же формальными свойствами, что и натуральные числа. Если не гнаться за строгостью, то можно сказать,что верно не только равенство 2?3 = 3?2, но и равенство ?2??3 = ?3??2.
Иначе говоря, ab можно заменить на ba независимо от того, означают ли a и b натуральные или иррациональные числа.
Весьма примечательна последовательность, в которой развивались события. Вместо того, чтобы, начав с целых чисел и дробей, перейти к иррациональным и комплексным числам, алгебре и математическому анализу, ученые решали проблему обоснования математики в обратном порядке. Они действовали так, будто крайне неохотно затрагивали проблемы, которые, как всем было ясно, можно было до поры до времени обходить стороной, и принимались за обоснование лишь в тех случаях, когда это вызывалось настоятельной необходимостью. Как бы то ни было, в 90-е годы XIX в., через каких-нибудь шесть тысяч лет (!) после того, как египтяне и вавилоняне «пустили в оборот» целые числа, дроби и иррациональные числа, математики смогли наконец доказать, что 2 + 2 = 4. Стало ясно, что даже великие математики должны заботиться о математической строгости.
В конце XIX в. была решена еще одна выдающаяся проблема. На протяжении 60 лет — с того времени, когда Гаусс выразил уверенность в непротиворечивости построенной им неевклидовой геометрии, вероятно, считая, что она может явиться геометрией реальной Вселенной, и вплоть до начала 70-х годов XIX в., когда были опубликованы работы Гаусса по неевклидовой геометрии и (впоследствии прославленная, а первоначально не оцененная) пробная лекция Римана на получение звания приват-доцента, — большинство математиков не принимали неевклидову геометрию всерьез (гл. IV). Выводы, напрашивающиеся из самого существования неевлидовой геометрии, настолько пугали своей непривычностью, что ученые предпочитали не задумываться над ними. У математиков все еще теплилась надежда, что в один прекрасный день в каждой из нескольких предложенных неевклидовых геометрий вскроются противоречия и эти странные творения человеческой фантазии можно будет предать забвению как бессмысленные.
К счастью, вопрос о непротиворечивости элементарных неевклидовых геометрий наконец удалось разрешить. Метод, которым была решена эта проблема, заслуживает — особенно в свете последующих событий — того, чтобы познакомиться с ним подробнее. Одна из неевклидовых геометрий — так называемая удвоенная эллиптическая геометрия, идея которой содержалась в лекции Римана 1854 г., — существенно отличается от евклидовой геометрии. В этой геометрии нет параллельных; любые две прямые пересекаются в двух точках; сумма внутренних углов треугольника больше 180°. Многие другие ее теоремы также отличаются от своих евклидовых аналогов. В 1868 г. Эудженио Бельтрами (1835-1900) обнаружил, что удвоенная эллиптическая геометрия плоскости применима к поверхности сферы, если прямые в удвоенной эллиптической геометрии интерпретировать как большие окружности на сфере (окружности, центры которых совпадают с центром сферы, например окружности, образуемые меридианами).
Может показаться, что предложенная Бельтрами интерпретация удвоенной эллиптической геометрии неприемлема. Создатели всех неевклидовых геометрий показали, что в их геометриях прямые ничем не отличаются от евклидовых прямых. Напомним, однако, что предложенные Евклидом определения прямой и других понятий (гл. V) были излишними. В любой области математики, как подчеркивал Аристотель, мы должны начинать наши построения с неопределяемых понятий. От прямых требуется лишь, чтобы они удовлетворяли аксиомам. Но большие окружности на сфере удовлетворяют всем аксиомам удвоенной эллиптической геометрии. А поскольку аксиомы удвоенной эллиптической геометрии применимы к большим окружностям на сфере, к этим окружностям должны быть применимы и теоремы удвоенной эллиптической геометрии, так как они логически вытекают из аксиом.
Если исходить из интерпретации прямой как большой окружности, то непротиворечивость удвоенной эллиптической геометрии устанавливается следующим образом. Если бы в удвоенной эллиптической геометрии существовали противоречивые теоремы, то должны были бы существовать противоречивые теоремы и в сферической геометрии — геометрии на поверхности сферы. Но сфера — один из объектов, изучаемых евклидовой геометрией. Следовательно, если евклидова геометрия непротиворечива, то должна быть непротиворечива и удвоенная эллиптическая геометрия.
Доказать непротиворечивость гиперболической геометрии (гл. IV) оказалось не так просто. Но как непротиворечивость удвоенной эллиптической геометрии удалось доказать на модели — сферической поверхности, так и непротиворечивость гиперболической геометрии была доказана на модели — несколько более сложной поверхности трехмерного евклидова пространства, изучаемой в (евклидовой!) дифференциальной геометрии. Нам нет необходимости описывать эту модель (см., например, [48]). Заметим лишь, что непротиворечивость гиперболической геометрии означает помимо прочего независимость аксиомы Евклида о параллельных от остальных аксиом евклидовой геометрии. Действительно, если бы аксиома Евклида о параллельных не была независима от остальных аксиом евклидовой геометрии, т.е. если бы ее можно было вывести из них, то она была бы теоремой гиперболической геометрии, так как, за исключением аксиомы о параллельных, все остальные аксиомы гиперболической геометрии совпадают с аксиомами евклидовой геометрии. Но эта евклидова «теорема» противоречила бы аксиоме о параллельных гиперболической геометрии и гиперболическая геометрия была бы противоречивой. Следовательно, полуторавековые попытки вывести аксиому Евклида о параллельных (пятый постулат Евклида) из других аксиом евклидовой геометрии были заранее обречены на провал.
Неевклидовы геометрии, задуманные как «геометрии реального пространства», где прямая имеет тот же смысл (тот же вид, то же строение), что и в евклидовой геометрии, оказались применимыми к фигурам, совершенно отличным от тех, которые имели в виду создатели неевклидовых геометрий, и это важное обстоятельство имело серьезные последствия: неевклидовы геометрии получили совершенно различные интерпретации, ибо (как мы уже неоднократно отмечали) в любой аксиоматике должны быть неопределяемые понятия, которым в принципе можно придать какой угодно смысл — только бы удовлетворялись определяющие эти понятия аксиомы. Интерпретации неевклидовых геометрий получили название моделей. Таким образом, физический смысл той или иной математической теории оказался необязательным: одна и та же теория могла применяться к совершенно различным физическим или математическим ситуациям.
Непротиворечивость неевклидовых геометрий была доказана в предположении, что евклидова геометрия непротиворечива. У математиков 70-80-х годов прошлого века непротиворечивость евклидовой геометрии сомнений не вызывала. Несмотря на работы Гаусса, Лобачевского, Бойаи и Римана, евклидову геометрию продолжали считать естественной и непременной геометрией реального мира, а сама мысль о том, что геометрия реального мира может быть внутренне противоречивой, казалась нелепой. Тем не менее непротиворечивость евклидовой геометрии не была доказана логически.
Многие математики, относившиеся к неевклидовой геометрии почти презрительно, с удовлетворением восприняли доказательства непротиворечивости ее различных вариантов совсем по другой причине: дело в том, что хотя неевклидовы геометрии обретали смысл, но, как следовало из приведенных доказательств, лишь как модели, которые строились в рамках евклидовой геометрии. Это позволяло принять их как геометрии, реализуемые на тех или иных поверхностях, а не как геометрии, применимые к физическому миру, где прямые понимались в обычном смысле. Разумеется, подобный подход полностью противоречил взглядам Гаусса, Лобачевского и Римана (а в несколько ином смысле — и Бойаи).
Нерешенной оставалась лишь одна фундаментальная проблема, связанная с наведением строгости в математике: в основаниях евклидовой геометрии обнаружились изъяны. Однако в отличие от математического анализа природа геометрии и ее понятий была ясна. Установить неопределяемые термины, уточнить определения, восполнить недостающие аксиомы и завершить доказательства было сравнительно простой задачей. Она была решена независимо Морицем Пашем (1843-1930), Джузеппе Веронезе (1854-1917) и Марио Пиери (1860-1904). Давид Гильберт (1862-1943), по достоинству оценивший вклад Паша, предложил свой вариант аксиоматического построения евклидовой геометрии, который наиболее широко используется в наши дни. На едином дыхании он заложил основания неевклидовой геометрии Ламберта, Гаусса, Лобачевского и Бойаи, а также других геометрий, созданных в XIX в., главным образом проективной геометрии.{93}
Так, к началу XX в. математическая строгость восторжествовала в арифметике, алгебре, математическом анализе (начала которого базировались на аксиомах для целых чисел) и геометрии (на основе аксиом для точек, прямых и других геометрических объектов). Многих математиков соблазняла возможность пойти еще дальше и достроить на понятии числа всю геометрию — план, осуществимый с помощью аналитической геометрии. Сама геометрия как таковая по-прежнему не вызывала у них доверия. У математиков еще не изгладился из памяти один из уроков, преподанных им неевклидовой геометрией, которая выявила серьезные изъяны в евклидовой геометрии, считавшейся до сих пор образцом математической строгости. Однако к началу XX в. программа сведения всей геометрии к числу не была выполнена. Тем не менее большинство математиков того времени говорили об арифметизации геометрии, хотя правильнее было бы говорить об арифметизации математического анализа. Так, на II Международном конгрессе математиков, состоявшемся В 1900 г. в Париже, Пуанкаре утверждал: «На сегодняшний день в математическом анализе остались только целые числа, а также конечные и бесконечные системы целых чисел, связанных между собой системой отношений равенства или неравенства. Математика, можно сказать, арифметизована». Паскалю принадлежит следующее высказывание: «Tout ce qui passe la G?om?trie nous passe» (все, что выходит за рамки Геометрии, выходит за рамки нашего понимания). В начале XX в. математики предпочитали говорить иначе: «Tout ce qui passe l'Arithm?tique nous passe» (все, что выходит за рамки Арифметики, выходит за рамки нашего понимания).
Движения, первоначально ставившие перед собой довольно ограниченные цели, по мере своего разрастания нередко начинают охватывать гораздо более широкий круг проблем, чем ранее предполагалось. Критическое движение в области оснований математики со временем сделало мишенью своих атак и логику — законы мышления, используемые в математических доказательствах при переходе от одного заключения к другому.
Начало логике как науке было положено сочинением Аристотеля «Органон» (Инструмент [мышления], около 300 г. до н.э.) [см. прим. {38} к гл. IV]. По признанию Аристотеля, он выделил законы мышления, используемые математиками, абстрагировал их от частностей и обнаружил, что эти законы обладают универсальной применимостью. Так, один из фундаментальных законов аристотелевой логики, закон исключенного третьего, гласит: всякое имеющее смысл высказывание либо истинно, либо ложно. Закон исключенного третьего Аристотель мог абстрагировать, например, из такого математического утверждения, как «всякое целое число либо четно, либо нечетно». Логика Аристотеля в основном представляла собой силлогистику — набор правил о выводе новых утверждений из уже известных.
На протяжении более чем двух тысячелетий логика Аристотеля не вызывала возражений у мыслителей, в частности у математиков. Правда, Декарт, подвергавший сомнению любые убеждения и учения, задал вопрос: откуда нам известно, что законы логики правильны? И сам же ответил на него: господь бог не стал бы вводить нас в заблуждение. Так Декарт обосновал для себя всеобщую убежденность в правильности законов логики.
Декарт и Лейбниц надеялись, что им удастся расширить логику до универсальной науки о мышлении, применимой ко всем областям человеческого разума, — построить своего рода универсальное исчисление мышления. Они намеревались уточнить и облегчить применение законов мышления введением буквенной символики, подобной алгебраической. О математическом методе Декарт отзывался так: «Это более мощный инструмент познания, чем все остальные, что дала нам человеческая деятельность, ибо он служит источником всего остального».
По замыслам Лейбница, имевшим несколько более конкретный характер, чем планы Декарта, для построения универсальной логики необходимы три основных элемента. Первый элемент — универсальный научный язык (characteristica universalis), частично или полностью символический и применимый ко всем истинам, выводимым посредством рассуждений. Вторая составная часть — исчерпывающий набор логических форм мышления (calculus ratiocinator), позволяющих осуществить любой дедуктивный вывод из начальных принципов. Третий элемент — набор основных понятий (ars сотbinatoria), через которые определяются все остальные понятия, своего рода алфавит мышления, позволяющий сопоставить символ каждой простой идее. Комбинируя символы и производя над ними различные операции, мы получаем возможность выражать и преобразовывать более сложные понятия.
К числу фундаментальных принципов следует отнести, например, закон тождества: A есть A (и A не есть «не A»). Из таких законов можно было бы вывести все мыслимые истины, включая математические. Кроме того, существуют фактические истины, но они в значительной мере опираются на так называемый принцип достаточного основания, состоящий в том, что эти истины могут быть именно такими, а не какими-либо иными. Лейбниц был основоположником символической логики, однако его работы в этой области оставались неизвестными до 1901 г.
Ни Декарту, ни Лейбницу не удалось развить последовательно символическое исчисление логики. Они создали лишь отдельные фрагменты.{94} Вплоть до XIX в. логика Аристотеля сохраняла свои позиции. В 1797 г. Кант во втором издании «Критики чистого разума» назвал логику «замкнутым и полным учением». Хотя до начала XX в. большинство математиков в своих рассуждениях продолжали следовать неформальным, изложенным лишь словесно, а не символически, принципам аристотелевой логики, они пользовались и другими схемами рассуждений, не исследованными Аристотелем. Не вдаваясь в анализ используемых логических принципов, математики пребывали в уверенности, что их рассуждения не выходят за рамки адекватной дедуктивной логики. В действительности же они использовали интуитивно вполне разумные, но не сформулированные явно логические принципы.
В то время как внимание большинства математиков было сосредоточено на обосновании собственно математики, менее многочисленная группа занялась критическим пересмотром логики. Выдающихся успехов в этом направлении добился профессор математики Куинз-колледжа в Корке (Ирландия) Джордж Буль (1815-1864).{95}
В своей работе Буль, несомненно, вдохновлялся примером общей (или абстрактной) алгебры, основы которой были заложены кембриджской группой — Пикоком, Грегори и де Морганом (гл. VII). Хотя использованный этими авторами принцип перманентности форм в действительности не мог служить обоснованием алгебраических операций, производимых над буквенными коэффициентами с вещественными или комплексными значениями, Пикок, Грегори и де Морган косвенно способствовали возникновению нового взгляда на алгебру как на науку о символах и операциях, которые могут иметь любую природу и представлять любые объекты. Работа Гамильтона о кватернионах (1843) показала, что возможны другие алгебры, отличные от привычной алгебры вещественных и комплексных чисел. Обобщение алгебраических рассуждений в форме так называемой алгебры операторов предложил в 1844 г. Буль. Его также беспокоила мысль о том, что алгебра не обязательно должна заниматься рассмотрением одних лишь чисел и что законы алгебры не обязательно должны совпадать с законами арифметики вещественных и комплексных чисел. Упомянув об этом в начале своей работы «Математический анализ логики» (1847), Буль вскоре развил алгебру логики. Шедевром по праву считается работа Буля «Исследование законов мышления» (1854). Основная идея Буля, менее претенциозная, чем идея Лейбница об универсальной алгебре, и более близкая по духу лейбницевскому calculus ratiocinator (логическая форма мышления), состояла в том, что существующие законы мышления представимы в символическом виде, позволяющем придать более точный смысл обычным логическим рассуждениям и упростить их применение. В своей книге Буль так сформулировал программу построения алгебры логики:
В предлагаемом вниманию читателей трактате мы намереваемся исследовать фундаментальные законы тех операций разума, посредством которых осуществляется мышление, дабы выразить их на символическом языке исчисления и на этой основе построить науку логики и ее метод.
Кроме того, Буля интересовали некоторые конкретные приложения логики, в частности к законам вероятности.
Буквенная символика обладает многими преимуществами. В ходе рассуждений тому или иному выражению иногда по ошибке можно придать смысл, отличный от первоначального, или употребить неправильное дедуктивное умозаключение. Так, при обсуждении света как оптического явления употребление выражения «повидать свет» может быть истолковано неверно (так как в обычной бытовой лексике оно означает «побывать во многих странах мира»). Но если свет как физическое явление обозначить, например, буквой l, то при любых преобразованиях буквенных выражений, содержащих l, эта буква будет означать только свет как физическое явление и ничего другого. Кроме того, все доказательства сводятся к преобразованию одних наборов символов в другие по заранее заданным правилам, заменяющим словесные формулировки законов логики. Правила преобразований выражают правильные законы логики в сжатом, четком и легко применимом виде.
Чтобы по достоинству оценить булеву алгебру логики, упомянем лишь некоторые из ее идей. Пусть символы x и y означают классы объектов, например класс собак и класс рыжих животных. Тогда xy означает класс объектов, принадлежащих одновременно классу x и классу y. Если x и y имеют предложенную нами интерпретацию, то xy означает класс рыжих собак. Равенство xy = yx верно при любых x и y. Если z — класс белых объектов и если x = y, то zx = zy. Кроме того, из самого смысла «произведения» xy следует, что xx = x.
Символ x + y означает класс объектов, принадлежащих либо классу x, либо классу y, либо классам x и y одновременно. (Это более поздняя модификация логических построений Буля, предложенная Уильямом Стенли Джевонсом (1835-1882).{96}) Так, если x — класс мужчин, а y — класс избирателей, то x + y — класс мужчин и избирателей (включающий в себя помимо избирателей-мужчин также и избирателей-женщин). Нетрудно доказать, что если, скажем, z — класс людей старше 35 лет, то
z(x + y) = zx + zy.
Если x — некоторый класс объектов, то 1 ? x (или ?x) — множество всех объектов, не принадлежащих классу x. Так, если 1 — множество всех объектов, x — множество собак, то 1 ? x (или ?x) — множество всех объектов, не являющихся собаками. Соответственно ?(?x) означает множество собак. Равенство
x + (1 ? x) = 1
означает, что все объекты либо относятся к собакам, либо нет. А это есть не что иное, как закон исключенного третьего для классов. Буль показал, как с помощью таких чисто алгебраических операций проводить рассуждения в самых различных областях.
Буль заложил также основы исчисления высказываний, хотя начало этой области логики восходит к стоикам (IV в. до н.э.). В интерпретации этого исчисления p, например, означает «Джон — человек». Утверждать p означает утверждать, что высказывание «Джон — человек» истинно. Тогда 1 ? p (или ?p) означает, что высказывание «Джон — человек» не истинно. Аналогично высказывание ?(?p) означает: «Неверно, что Джон не человек», т.е. «Джон — человек». Закон исключенного третьего для высказываний, гласящий, что любое высказывание либо истинно, либо ложно, Буль записывал в виде p + (?p) = 1, где 1 соответствует истине. Произведение pq истинно, когда истинны оба высказывания p и q, а сумма p + q истинна, если истинно либо p, либо q (либо истинны оба высказывания).
Другое новшество было внесено де Морганом. В своем главном труде «Формальная логика» (1847) де Морган высказал идею о том, что логика должна заниматься изучением отношений в общем виде. Так, аристотелева логика занималась изучением отношения «быть» (x есть y). Классический пример: «Все люди смертны». Но аристотелева логика, по словам де Моргана, не в состоянии вывести из утверждения «Лошадь — животное» утверждение «Голова лошади — голова животного»: для этого необходимо ввести дополнительную посылку о том, что у всех животных есть головы. В сочинениях Аристотеля также есть фрагменты, посвященные логике отношений, хотя писал он о них довольно невразумительно и сжато. Кроме того, многие труды Аристотеля и обобщения, сделанные средневековыми учеными, были безвозвратно утеряны к XVII в. В необходимости логики отношений убедиться нетрудно. Так, следующее рассуждение, построенное только на отношении «быть», как легко видеть, ложно:
A есть p;
B есть p.
Следовательно, А и В суть p.
Действительно, рассуждение
Джон — брат,
Питер — брат;
следовательно, Джон и Питер братья (каждый доводится братом другому)
вполне может привести к неправильному заключению, если понятие «брат» расширить, включив в него и двоюродного брата. Аристотелевой логике не удалось построить логику отношений. На этот ее недостаток обращал внимание еще Лейбниц.
Отношения далеко не всегда удается перевести на язык субъекта и предиката, когда предикат лишь утверждает, что субъект принадлежит к задаваемому предикатом классу. Часто бывает необходимо рассматривать и такие утверждения, как «2 меньше 3» или «Точка Q лежит между точками P и R». Для подобных высказываний также необходимо определять, что означает их отрицание, т.е. обратное утверждение, сложное высказывание, составленное из нескольких таких высказываний, и т.д.
Логика отношений была развита в серии статей, опубликованных в 1870-1893 гг. Чарлзом Сандерсом Пирсом (1839-1914), и систематизирована Эрнстом Шредером (1841-1902). Пирс ввел специальную символику для обозначения высказываний, выражающих отношения. Так, символ lij означает, что i любит j. Построенная Пирсом алгебра была сложной и малополезной. Позднее мы увидим, как рассматривает отношения современная математическая логика.
Пирс внес в науку логики еще одно важное дополнение, которое лишь слегка затронул Буль; он подчеркнул важность пропозициональных функций (функций-высказываний). Подобно тому как в математике мы рассматриваем функции, например y = 2x, отличая их от утверждений о конкретных числовых равенствах типа 10 = 2?5, так высказывание «Джон — человек» вполне конкретно, а высказывание «x — человек» означает пропозициональную функцию, зависящую от переменной x. Пропозициональные функции могут зависеть от двух и большего числа переменных: такова, например, функция «x любит y». Результаты Пирса позволили распространить логику и на пропозициональные функции.
Пирс ввел в логику и так называемые кванторы. Обычный язык неоднозначен по отношению к кванторам. В двух высказываниях:
Американец возглавлял войну за независимость;
Американец верит в демократию
субъект «американец» используется в двух различных смыслах: в первом высказывании речь идет о вполне конкретном лице — Джордже Вашингтоне, во втором — о любом американце. Обычно неоднозначность можно уменьшить, сославшись на контекст, в котором используется предложение, но в строгом логическом мышлении такая неоднозначность недопустима. Смысл высказывания должен быть ясен без всяких ссылок на контекст. Кванторы позволяют достичь однозначности высказываний. Мы можем утверждать, что какая-то пропозициональная функция истинна для всех индивидуумов из определенного класса, например для всех граждан США. В этом случае высказывание «Для всех x, x — люди» означает «Все граждане США — люди». Слова «для всех x» — квантор. Но мы можем также утверждать: существует по крайней мере один x, такой, что x — человек из США. В этом случае квантор — это слова «существует по крайней мере один x, такой, что». Каждый из этих типов кванторов имеет специальное обозначение: в первом случае
Включение в логику отношений пропозициональных функций и кванторов позволило существенно расширить ее. Охватив те типы рассуждений, которые используются в математике, логика стала более полной.
Последний шаг в математизации логики в XIX в. был сделан профессором математики Йенского университета Готлобом Фреге (1848-1925). Его перу принадлежит несколько фундаментальных трудов: «Исчисление понятий» (1879), «Основания арифметики» (1884) и «Основные законы арифметики» (т. I — 1893, т. II — 1903). Восприняв идеи логики высказываний, логики отношений, пропозициональные функции и кванторы, Фреге внес свой вклад в развитие математической логики. Он ввел различие между простым утверждением высказывания и утверждением, что данное высказывание истинно. В последнем случае Фреге ставил перед высказыванием знак |—. Фреге проводил также различие между объектом x и множеством {x}, содержащим только x, между элементом, принадлежащим множеству, и включением одного множества в другое.
Фреге формализовал более широкое понятие импликации — так называемую материальную импликацию, хотя следы этого понятия в неформализованной, словесной форме можно проследить вплоть до Филона из Мегары (около III в. до н.э.).{97} Логика имеет дело с рассуждениями относительно высказываний и пропозициональных функций, и весьма важная роль в этих рассуждениях отводится импликации. Так, если мы знаем, что Джон мудр и что мудрые люди живут долго, то с помощью импликации заключаем, что Джон будет жить долго.
Материальная импликация несколько отличается от обычно используемой импликации. Когда мы говорим, например, «Если пойдет дождь, то я отправлюсь в кино», между двумя высказываниями «Пойдет дождь» и «Я отправлюсь в кино» существует не просто какое-то отношение, а именно импликация: если антецедент (высказывание, стоящее в условном высказывании между «если» и «то») истинен, то из него с необходимостью следует консеквент (высказывание, стоящее в условном высказывании после «то»). Но в материальной импликации антецедентом p и консеквентом q могут быть любые высказывания. Между ними не обязательно должна существовать причинно-следственная связь и даже вообще какое бы то ни было отношение. Так, ничто не мешает нам рассматривать материальную импликацию «Если x — нечетное число, то я пойду в кино». Эта импликация ложна только в том случае, если x — нечетное число, а я все равно не отправлюсь в кино.
На более формальном языке это означает, что если p и q — высказывания и p истинно, то из истинности импликации «Если p, то q» («из p следует q», или «p влечет за собой q») мы вправе заключить, что q также истинно. Если же p ложно, то независимо от того, ложно или истинно q, материальная импликация «Если p, то q» считается истинной. И только в том случае, если p истинно, a q ложно, импликация считается ложной. Понятие материальной импликации расширяет привычное употребление связки «если …, то …». Но такое расширение не приводит к каким-либо затруднениям, так как обычно мы используем импликацию «если p, то q», только когда знаем, что p истинно. Кроме того, материальная импликация в какой-то мере согласуется с тем смыслом, который мы обычно вкладываем в условные высказывания «Если …, то …». Рассмотрим предложение «Если Гарольд получит сегодня жалованье, то он купит продукты». Здесь p — высказывание «Гарольд получит сегодня жалованье», q — высказывание «Он купит продукты». Но Гарольд может купить продукты, даже если он не получит сегодня жалованье. Следовательно, импликацию «Если p, то q» мы можем считать истинной и в том случае, когда p ложно, a q истинно. Другим, возможно еще лучшим, примером разумности такого решения может служить условное предложение «Если бы дерево было металлом, то дерево было бы ковким». Мы знаем, что оба высказывания (и антецедент, и консеквент) ложны, тем не менее вся импликация в целом истинна. Следовательно, если p ложно и q ложно, то импликацию «Если p, то q» также надлежит считать истинной. Понятие материальной импликации находит важное применение, позволяя судить об истинности q по истинности p и импликации «Если p, то q». Обобщение на случай, когда p ложно, удобно для математической логики и представляется наиболее разумным из всех вариантов.
Поскольку если p ложно, то q следует из p независимо от того, истинно ли q или ложно, в случае материальной импликации из ложного высказывания может следовать что угодно — консеквент может быть любым. Упреки тех, кто видит в этом неисправимый «порок» материальной импликации, можно было бы отвергнуть, сославшись на то, что в непротиворечивой системе математики и логики не должно быть ложных высказываний. Тем не менее возражения против понятия материальной импликации все же выдвигались. Так, Пуанкаре иронически заметил: «Но кто исправлял плохую кандидатскую математическую работу, тот мог заметить, насколько правильно смотрит на дело Рассел. Кандидат часто много трудится для того, чтобы найти первое ложное уравнение; но лишь только он его получил, для него уже не представляет никакого труда сделать из него самые неожиданные выводы, из которых иные могут оказаться и точными» ([1], с. 379). Но, несмотря на все попытки усовершенствовать понятие импликации, именно материальная импликация стала стандартным понятием, по крайней мере в математической логике, используемой как основа всей современной математики.
Фреге внес в развитие логики еще один вклад, важность которого была по достоинству оценена много позднее. В логике известно много принципиальных схем рассуждений. Их можно сравнить с многочисленными утверждениями евклидовой геометрии о треугольниках, прямоугольниках, окружностях и других фигурах. В результате пересмотра других областей математики, произведенного в конце XIX в., многие утверждения геометрии были выведены из небольшого числа основных утверждений — аксиом. То же самое Фреге сделал в логике. Его обозначения и аксиомы были достаточно сложными, и мы ограничимся лишь словесным описанием предложенного Фреге аксиоматического подхода к логике (см. также гл. X). Вряд ли кто-нибудь усомнится принять за аксиому утверждение «Если p, то p или q», так как высказывание «p или q» истинно, если истинно по крайней мере одно из входящих в него высказываний, p или q, а если p истинно, то одно из высказываний, p или q, заведомо истинно.
Можно принять также за аксиому, что если какое-то высказывание (или комбинация высказываний) A истинно и если из A следует B, где B — другое высказывание (или комбинация высказываний), то B истинно. Эта аксиома, называемая правилом вывода, позволяет нам выводить новые высказывания и утверждать, что они истинны.
Из приведенных аксиом мы можем, например, вывести
p истинно или p ложно,
т.е. закон исключенного третьего.
Можно также вывести закон противоречия, словесная формулировка которого гласит: не верно, что p и не p оба истинны (истинным может быть только одно из двух высказываний: либо p, либо не p). Закон противоречия часто используется в математике в так называемых доказательствах от противного. В доказательствах такого рода мы, предположив, что p истинно, заключаем, что p ложно. Но тогда p и не p истинны одновременно, что невозможно. Следовательно, p ложно. Иногда доказательство от противного проводится несколько иначе. Предположив, что p истинно, мы доказываем, что из p следует q. Но о высказывании q известно, что оно ложно. Следовательно, по одному из законов логики должно быть ложным и p. Многие другие законы логики, широко используемые в математических доказательствах, также выводимы из аксиом. Начало дедуктивному построению логики было положено Фреге в его работе «Исчисление понятий» и продолжено им в «Основных законах арифметики».
Фреге поставил перед собой и более претенциозную задачу, о которой пойдет речь в дальнейшем (гл. X). Пока же, не вдаваясь в подробности, заметим, что Фреге стремился своими трудами по логике заложить новую основу арифметики, алгебры и математического анализа — более строгую, чем удалось создать за последние десятилетия XIX в., ознаменовавшиеся критическим движением в области оснований математики.
Значительную роль в использовании математической логики для достижения большей математической строгости сыграл Джузеппе Пеано. Занимаясь преподаванием математики, Пеано, как до него Дедекинд, обнаружил недостаточность строгости существовавших до него доказательств и посвятил всю свою жизнь усовершенствованию оснований математики. Символику математической логики Пеано применил для записи не только законов логики, но и математических аксиом, а также для вывода теорем из аксиом с помощью преобразования по правилам математической логики комбинаций символов, выражающих аксиомы. Пеано открыто и со всей определенностью говорил о необходимости отказаться от интуитивных представлений. Достичь намеченной цели можно было, лишь используя буквенную символику, так как при этом интерпретация символов не влияла на математическое доказательство. Символика позволяла избежать обращения к интуитивным ассоциациям, связанным с обычными словами.
Для обозначения понятий, кванторов и таких связок, как «и», «или» и «не», Пеано ввел собственные символы. Его символическая логика была весьма рудиментарной, но тем не менее Пеано оказал огромное влияние на развитие работ по основаниям математики. Он был основателем и главным редактором журнала Revista di Matematica (1891-1906) и пятитомного «Формуляра математики» (1894-1908). Именно в «Формуляре» Пеано впервые опубликовал уже упоминавшуюся нами аксиоматику целых чисел. Пеано основал школу математических логиков, в то время как работы Пирса и Фреге, по существу, оставались незамеченными, пока Бертран Рассел не «открыл» в 1901 г. труды Фреге. О работах Пеано Рассел узнал в 1900 г. и считал символику Пеано более удачной, чем символика Фреге.
От Буля до Шредера, Пирса и Фреге все нововведения в логике сводились к применению математического метода: символики и дедуктивного вывода логических законов из логических аксиом. Вся эта работа по созданию формальной или символической логики была благосклонно встречена логиками и математиками, так как использование символики позволило избегать психологических, теоретико-познавательных и метафизических смысловых неоднозначностей и ассоциаций.
Систему логики, включающую пропозициональные функции, отношения типа «x любит у» или «точка A лежит между точками B и C», ныне принято называть исчислением предикатов первой ступени. Хотя, по мнению некоторых логиков, такое исчисление охватывает не все типы рассуждений, используемых в математике, например оно не включает математическую индукцию, современные логики отдают предпочтение именно этой логической системе.{98}
Распространение логики на все типы рассуждений, используемых в математике, придание утверждениям большей точности за счет проведения различия между высказываниями и пропозициональными функциями, введение кванторов, несомненно, способствовали повышению математической строгости, к которой так стремились математики XIX в. Аксиоматизация логики полностью отвечала духу времени.
Имея в виду наш последующий анализ логической структуры математики, подчеркнем, что как в самой математике, так и в алгебре установление высоких стандартов строгости стало возможным благодаря аксиоматическому подходу, впервые использованному Евклидом. Движение за аксиоматизацию в XIX в. позволило выяснить некоторые особенности аксиоматического подхода. Рассмотрим их подробнее.
Одна из особенностей аксиоматического подхода — необходимость неопределяемых понятий. Математика строится независимо от остальных областей человеческого знания, поэтому одно математическое понятие приходится определять через другие. Но тогда возникла бы бесконечная цепочка определений. Выход из создавшегося затруднения состоит в том, что основные понятия должны быть неопределяемыми. Но как пользоваться неопределяемыми понятиями? Откуда мы знаем, что о них можно утверждать? Ответ на этот вопрос и дает аксиоматика; аксиомы содержат утверждения о неопределяемых (и определяемых) понятиях. Следовательно, аксиомы говорят нам, что можно утверждать о неопределяемых понятиях. Так, если точка и прямая неопределяемы, то аксиома о том, что две точки задают прямую и притом только одну, и аксиома о том, что три точки задают плоскость и притом только одну, служат теми утверждениями, которые мы можем использовать при выводе новых утверждений о точке, прямой и плоскости. Хотя Аристотель в «Органоне», Паскаль в «Трактате о геометрическом духе» и Лейбниц в «Монадологии» подчеркивали необходимость неопределяемых понятий, математики по непонятным причинам прошли мимо этих предупреждений и продолжали давать определения, не имевшие смысла. Еще в начале XIX в. Жозеф Диас Жергонн (1771-1859) высказал со всей определенностью важную мысль: аксиомы говорят нам все, что мы можем утверждать о неопределяемых понятиях, т.е. как бы содержат неявные определения таких понятий. Но математики всерьез восприняли эту идею лишь после того, как в 1882 г. Мориц Паш вновь подтвердил необходимость неопределяемых понятий.
Осознание того, что любая дедуктивная система должна содержать неопределяемые понятия, которые можно интерпретировать как угодно, лишь бы вводимые объекты удовлетворяли аксиомам, подняло математику на новый уровень абстракции. Это весьма рано понял Герман Грассман, отметивший в своей «Теории линейной протяженности» (1844), что геометрия не сводится исключительно к изучению реального, физического, пространства. Геометрия — конструкция чисто математическая. Она применима для описания реального пространства, но отнюдь не исчерпывается этой своей интерпретацией. Творцы аксиоматики, работавшие позднее, Паш, Пеано и Гильберт, всячески подчеркивали абстрактность геометрии. Тем не менее, отчетливо сознавая существование неопределяемых понятий, смысл которых ограничен лишь аксиомами, Паш в своих работах мысленно следовал единому образцу геометрии. Пеано, знавший работы Паша, в статье от 1889 г. высказал мысль о возможности многих других интерпретаций геометрии. Гильберт в «Основаниях геометрии» (1899) [50] заявил, что, хотя мы используем такие слова, как точка, прямая, плоскость и т.д., вполне можно было бы говорить о пивных кружках, стульях и любых других предметах, лишь бы они удовлетворяли аксиомам. То, что одна дедуктивная система допускает множество интерпретаций, можно расценивать как весьма благоприятное обстоятельство, позволяющее расширить круг возможных приложений, но вместе с тем оно приводит, как мы увидим в дальнейшем (гл. XII), и к некоторым неприятным последствиям.
Паш великолепно понимал современную аксиоматику. Именно ему принадлежит замечание (важность которого в конце XIX в. не была по достоинству оценена) о том, что во всех случаях необходимо дать доказательство непротиворечивости любой рассматриваемой системы аксиом, т.е. доказательство того, что выбранная система аксиом не порождает противоречащих друг другу теорем. Проблема непротиворечивости возникла в связи с неевклидовыми геометриями и была для них удовлетворительно разрешена. Однако неевклидова геометрия оставалась для многих довольно непривычной областью математики. Что же касается таких старых фундаментальных ее разделов, как арифметика или евклидова геометрия, то всякие сомнения в их непротиворечивости казались чисто академическими. Тем не менее Паш считал необходимым установить непротиворечивость и этих систем аксиом. Ему вторил Фреге, писавший в «Основаниях арифметики» (1884):
Обычно поступают так, будто принятие постулатов само по себе достаточно для того, чтобы все постулаты выполнились. Мы постулируем, что операция вычитания, деления или извлечения корня всегда выполнима, и считаем, что этого вполне достаточно. Но почему мы не постулируем, что через любые три точки можно провести прямую? Почему мы не постулируем, что все законы сложения и умножения остаются в силе для комплексных чисел с тремя единицами точно так же, как они выполняются для вещественных чисел? Это происходит потому, что такого рода постулаты содержат противоречие. Прекрасно! Но тогда первое, что нам необходимо сделать, — это доказать непротиворечивость наших остальных постулатов. А пока это не будет сделано, вся строгость, к которой мы так стремимся, останется столь же зыбкой и призрачной, как лунное сияние.
Пеано и его школа в 90-х годах XIX в. также стали несколько серьезнее относиться к проблеме непротиворечивости. Пеано был уверен в том, что методы, позволяющие доказывать непротиворечивость аксиом, не замедлят появиться.
Над проблемой непротиворечивости математики вполне могли бы задуматься еще древние греки. Почему же она выступила на передний план лишь в конце XIX в.? Как мы уже говорили, создание неевклидовой геометрии в значительной мере способствовало осознанию того, что геометрия является творением человека и лишь приближенно описывает происходящее в реальном мире. При всех неоспоримых достоинствах этого описания его нельзя считать истинным в том смысле, что оно не адекватно внутренней структуре окружающего мира и, следовательно, не обязательно непротиворечиво. Движение за аксиоматизацию математики в конце XIX в. заставило математиков понять, сколь глубокая пропасть отделяет математику от реального мира. Каждая аксиоматическая система содержит неопределяемые понятия, свойства которых задаются только аксиомами. Смысл неопределяемых понятий не зафиксирован раз и навсегда, хотя интуитивно мы представляем себе, что такое точки или прямые. Разумеется, предполагается, что аксиомы выбраны так, чтобы задаваемые им свойства находились в согласии с теми, которые мы интуитивно с ними связываем. Но можем ли мы быть уверенными в том, что нам удалось выбрать аксиомы именно таким образом, что, формулируя их, мы не привнесли некоторое нежелательное свойство (или же оно следует из принятых нами аксиом), которое может привести к противоречию?
Паш отметил еще одну особенность аксиоматического метода. В любой области математики желательно, чтобы аксиомы были независимыми, т.е. чтобы любую из принятых аксиом нельзя было вывести из остальных, так как аксиома, выведенная из других, является уже не аксиомой, а теоремой. Метод доказательства независимости той или иной аксиомы состоит в указании интерпретации или построении модели, в которой все аксиомы, кроме проверяемой на независимость, выполняются, а проверяемая аксиома не выполняется. (Такая интерпретация не обязательно должна быть совместимой с отрицанием проверяемой аксиомы.) Так, для доказательства независимости аксиомы Евклида о параллельных от остальных аксиом евклидовой геометрии можно воспользоваться интерпретацией гиперболической неевклидовой геометрии, в которой выполняются все аксиомы евклидовой геометрии, кроме аксиомы о параллельных, а сама аксиома о параллельных не выполняется. Интерпретация, удовлетворяющая проверяемой аксиоме и противоположной аксиоме, не была бы непротиворечивой. Следовательно, прежде чем воспользоваться для доказательства независимости какой-либо аксиомы интерпретацией, или моделью, необходимо убедиться в том, что эта интерпретация, или модель, непротиворечива. Так, независимость аксиомы Евклида о параллельных была доказана на модели гиперболической евклидовой геометрии, реализуемой на поверхности в евклидовом пространстве.
В дальнейшем мы расскажем о сомнениях, неадекватностях и глубоких проблемах, которые породила аксиоматизация математики; однако в начале XX в. аксиоматический метод считался идеалом математической строгости. Никто не превозносил аксиоматический метод больше, чем Гильберт, ставший к тому времени признанным лидером мировой математики. В статье «Аксиоматическое мышление» (1918) он утверждал:
Все, что может быть предметом математического мышления, коль скоро назрела необходимость в создании теории, оказывается в сфере действия аксиоматического метода и тем самым математики. Проникая во все более глубокие слои аксиом… мы получаем возможность все дальше заглянуть в сокровенные тайны научного мышления и постичь единство нашего знания. Именно благодаря аксиоматическому методу математика, по-видимому, призвана сыграть ведущую роль во всем нашем знании.
Аналогичные мысли Гильберт высказывал и в 1922 г.:
Аксиоматический метод поистине был и остается подходящим и неоценимым инструментом, в наибольшей мере отвечающим духу каждого точного исследования, в какой бы области оно ни проводилось. Аксиоматический метод логически безупречен и в то же время плодотворен; тем самым он гарантирует полную свободу исследования. В этом смысле применять аксиоматический метод — это значит действовать, понимая, о чем идет речь. Если ранее, до аксиоматического метода, приходилось действовать наивно, слепо веря в существование определенных отношений, то аксиоматический метод устраняет подобную наивность, сохраняя все преимущества уверенности.
Возможно, создается впечатление, что математики приветствовали установление прочной, строгой основы своей науки. Однако математикам ничто человеческое не чуждо. И далеко не все математики с энтузиазмом приветствовали точную формулировку таких основных понятий, как иррациональное число, непрерывность, производная и интеграл. Многие не поняли новой терминологии и сочли точные определения своего рода причудами, отнюдь не обязательными для понимания математики и даже для строгих доказательств. Те, кто так считал, полагались на свою интуицию, несмотря на сюрпризы, преподнесенные открытием непрерывных, но не дифференцируемых функций и других логически правильных, но противоречащих интуиции математических объектов. Так, в 1904 г. Эмиль Пикар (1856-1941), говоря о строгости в теории дифференциальных уравнений с частными производными, заметил: «Истинная строгость плодотворна и этим отличается от другой строгости, чисто формальной и утомительной, бросающей тень на затрагиваемые ею проблемы». Шарль Эрмит (1822-1901) в письме к Томасу Яну Стильтьесу от 20 мая 1893 г. признавался: «С чувством непреодолимого отвращения я отшатываюсь от достойного всякого сожаления зла — непрерывных функций, не имеющих производных». Пуанкаре (1854-1912), с чьей философией математики нам предстоит познакомиться в следующей главе, жаловался; «В прежние времена новые функции вводились для того, чтобы их можно было применять. Ныне же строят функции, чтобы прийти в противоречие с выводами наших предшественников. Такие функции не годятся ни для чего иного».
Многие авторы тех определений и доказательств, ошибочность которых стала очевидной, принялись утверждать, будто имели в виду именно тот смысл, к которому привела строгая теория. К подобному приему прибегал даже такой выдающийся математик, как Эмиль Борель. Другие возражали против, как они говорили, «выискивания блох». В одной из своих работ, опубликованной в 1934 г., Годфри Гарольд Харди назвал строгость неотъемлемым элементом математики. Другие математики не понимали природы математической строгости и, опасаясь неприятностей, поносили ее. Некоторые даже поговаривали об анархии в математике. Новые идеи, в частности те, которые способствовали установлению математической строгости, математики воспринимали ничуть не менее предвзято, чем обычно люди воспринимают любые новшества.
Успехи в области оснований математики обнаружили еще одну сторону математических творений. Строгость не только удовлетворяла потребностям математики XIX в., но и позволила нам кое-что понять в развитии математики. Предполагалось, что обоснованные по последнему слову «математической техники» строгие структуры гарантируют «доброкачественность» математики, но эти гарантии оказались необоснованными. Ни одна теорема арифметики, алгебры или евклидовой геометрии не была изменена в результате пересмотра оснований, и только некоторые теоремы математического анализа пришлось сформулировать точнее. Например, прежде чем воспользоваться производной непрерывной функции, современным математикам приходится вводить дополнительную гипотезу о том, что эта функция дифференцируема. В действительности все новые аксиоматические структуры и строгость лишь подтвердили то, в чем и без того не сомневались математики. Аксиомы позволили доказать уже известные, а не какие-то новые теоремы, так как «старые» теоремы в подавляющем большинстве были правильными. В целом это означало, что в основе математики лежит не логика, а здравый смысл и интуиция. Строгость, по выражению Жака Адамара, лишь освящает то, что завоевано интуицией. Герман Вейль назвал строгость гигиеной, с помощью которой математик поддерживает здоровье и силу своих идей.
Как бы то ни было, к началу XX в. строгость снова стала играть заметную роль в математике и служить, хотя и с большим запозданием, гарантией прочности и обоснованности достижений, накопленных математикой за много столетий. Математики могли наконец во всеуслышание заявить, что исполнили свой долг по отношению к стандарту, установленному древними греками, и не без облегчения отметить, что, за исключением незначительных поправок, здание, построенное ими на эмпирической или интуитивной базе, теперь было в основном подкреплено логикой. При мысли об этом математиков охватывало ликование и даже самодовольство. Оглядываясь в прошлое, они могли указать несколько кризисных ситуаций (иррациональные числа, математический анализ, неевклидова геометрия, кватернионы) и поздравить себя с тем, что всякий раз им удавалось успешно разрешить возникавшую проблему.
На II Международном конгрессе математиков, состоявшемся в 1900 г. в Париже, с докладом на пленарном заседании выступил Анри Пуанкаре, соперничающий тогда с Гильбертом в борьбе за лидерство в математике. Несмотря на скептическое отношение к ценности некоторых усовершенствований в основаниях математики, Пуанкаре не без гордости заметил:
Достигли ли мы абсолютной строгости? Ведь на каждой стадии эволюции наши предки также верили в то, что достигли ее. Если они ошибались, то не ошибаемся ли и мы, подобно им?.. В новейшем анализе — если мы пожелаем взять на себя труд быть строгими — находят место силлогизмы и обращения к этой интуиции чистого числа, единственной интуиции, которая не может обмануть нас. Можно сказать, что ныне достигнута абсолютная строгость.
([1], с. 163-164.)
Пуанкаре повторил эти преисполненные гордости слова в одном из очерков, составивших его книгу «Ценность науки» (1905) [1]. И эта гордость вполне понятна, если учесть, какая проницательность потребовалась, чтобы добиться строгости в различных разделах математики. Наконец-то математика обрела основания, которые с радостью приняли все, за исключением нескольких тугодумов. Математикам было чему радоваться.
Один из персонажей «Кандида» Вольтера философ доктор Панглосс даже в ожидании повешения твердит о «лучшем из миров». Так и математики, не ведая, что вскоре их ожидает взрыв ими же заложенного сокрушительного заряда, с энтузиазмом рассуждали о том, что достигли наилучшего из возможных состояний. Между тем тучи уже сгущались, и если бы математики, собравшиеся в 1900 г. на конгресс, не были так поглощены заздравными тостами, то они без труда бы заметили их.
Но и среди участников достопамятного конгресса 1900 г. нашелся человек, который прекрасно понимал, что в основаниях математики разрешены далеко не все проблемы. На этом конгрессе Давид Гильберт выступил с знаменитым докладом, где перечислил 23 проблемы [51], решение которых, по его мнению, девятнадцатое столетие завещало двадцатому. Первая из названных проблем состояла из двух частей. Георг Кантор ввел трансфинитные числа для обозначения мощности (числа элементов) бесконечных множеств. В этой связи Гильберт предложил доказать, что трансфинитное число, выражающее мощность множества всех вещественных чисел, является ближайшим к трансфинитному числу, выражающему мощность множества всех целых чисел. К этой проблеме мы вернемся в гл. IX.
Во второй части первой проблемы Гильберта говорилось о необходимости поиска метода, который позволил бы переупорядочить вещественные числа, чтобы их множество стало вполне упорядоченным. С понятием вполне упорядоченного множества мы подробнее познакомимся в дальнейшем, а пока достаточно лишь сказать, что если множество всех вещественных чисел вполне упорядочено, то в любой извлеченной из него подпоследовательности должен существовать первый элемент. При обычном упорядочении вещественных чисел это требование не выполняется: например, если мы рассмотрим все числа, которые больше, например, 5, то в этом подмножестве первый элемент отсутствует.
Вторая проблема Гильберта была более очевидной и имела более широкое значение. Мы уже упоминали о проблеме непротиворечивости, поднятой в связи с неевклидовыми геометриями, и о доказательствах их непротиворечивости, исходивших из предположения о непротиворечивости евклидовой геометрии. Используя аналитическую геометрию, Гильберт показал, что евклидова геометрия непротиворечива, если непротиворечива арифметика. И содержание второй проблемы Гильберта составляло требование дать доказательство непротиворечивости арифметики.
Обе части первой проблемы Гильберта были известны еще Кантору. Паш, Пеано и Фреге обращали внимание также и на проблему непротиворечивости. Но только Гильберт в своем докладе, 1900 г. в полной мере продемонстрировал фундаментальный, непреходящий характер этих проблем. Большинство математиков, слушавших доклад Гильберта, несомненно, считали проблемы непротиворечивости тривиальными, несущественными, своего рода математическими курьезами и придавали большее значение другим проблемам, сформулированным Гильбертом. Что же касалось непротиворечивости арифметики, то она ни у кого не вызывала сомнений. То, что многие сомневались в непротиворечивости неевклидовой геометрии, вполне понятно, если учесть, сколь необычной и даже противоречащей интуиции была эта геометрия. Но вещественные числа находились в обращении более пяти тысяч лет, и о них было доказано бесчисленное множество теорем. Никаких противоречий при этом обнаружено не было. Аксиомы вещественных чисел приводили к хорошо известным теоремам. Как же система аксиом вещественных чисел могла быть противоречивой?
Но всякие сомнения в том, насколько мудро поступил Гильберт, включив названные выше проблемы в число 23 наиболее важных проблем и, более того, отведя им почетные первые места, вскоре рассеялись. Тучи, собравшиеся над математикой, закрыли теперь весь горизонт. Началась гроза, и некоторые математики услышали раскаты грома. Но даже Гильберт не мог предвидеть все неистовство бури, обрушившейся на здание математики.