Занятие 8
8.6. Обсуждение. Пусть А: «У Винни-Пуха хорошее настроение»; Б: «Винни-Пух хорошенько подкрепился». В какую строчку таблицы истинности надо посмотреть? Ответ. Не прав.
8.7. Истинны высказывания в пунктах 1, 3, 4, 5, 7. Ложны высказывания 2, 6, 8.
8.8. Все три высказывания означают, что некузявых ляпусиков не бывает.
Ответ. Равносильны.
8.9. Пусть Д спит. Тогда А и Г спят (из 5). Тогда Б спит (из 1), поэтому В не спит (из 3). Но это противоречит 4.
Значит, Д не спит. Тогда спят Г (из 2) и В (из 4), а Б не спит (из 3). Поэтому А не спит (из 1).
Ответ. В и Г.
8.10. Пусть мальчиков больше, чем девочек. Докажем от противного, что при любой рассадке по кругу найдутся два мальчика рядом. Предположим, что это не так, и рассмотрим произвольную рассадку. По предположению справа от каждого мальчика сидит девочка. То есть детей можно разбить на пары «мальчик и девочка справа от него», при этом могут остаться без пары только девочки. Поэтому их не меньше, чем мальчиков. Пришли к противоречию.
Пусть при любой рассадке по кругу найдутся два мальчика рядом. Рассмотрим произвольную рассадку и занумеруем детей по кругу по часовой стрелке. А затем посадим детей в таком порядке: 1, 3, 5, 7, 9, 11, 13, 15, 17, 2, 4, 6, 8, 10, 12, 14, 16. По условию после этого найдутся два мальчика рядом. Но раньше они сидели через одного, т. е. в исходном положении был гость, сидевший между ними.
Пусть при любой рассадке по кругу найдется гость, сидящий между двумя мальчиками. Докажем от противного, что мальчиков больше, чем девочек. Действительно, если бы девочек было больше, детей можно было бы рассадить так: ДДГГДДГГДДГГДДГГД, где буква Д означает девочку, а буква Г – гостя любого пола, и никто бы не сидел между двумя мальчиками.
8.11. 1) Всего существует 6 теорем указанного вида. Если дать их все, то последняя будет следовать из предыдущих. А 5 можно дать в таком порядке: 1 ? 2, 1 ? 3, 2 ? 3, 3 ? 2, 3 ? 1.
2) Всего существует 12 таких теорем. Как отмечено в предыдущем пункте, с участием утверждений 1, 2 и 3 нельзя давать все 6 возможных теорем. Без ограничения общности можно исключить теорему 2 ? 1. Но с участием утверждений 2, 3 и 4, а также 1, 3 и 4 тоже нельзя давать все 6 возможных теорем. Если пытаться решить обе проблемы исключением лишь одной теоремы, исключать надо 3 ? 4 или 4 ? 3. В любом из случаев остается цепочка из восьми теорем 1 ? 3 ? 2 ? 4 ? 1, из которой придется исключить как минимум одну теорему, и останется не более 9 теорем. Пример на 9 теорем: 1 ? 2, 1 ? 3, 1 ? 4, 2 ? 3, 2 ? 4, 3 ? 4, 4 ? 3, 4 ? 2, 4 ? 1.
3) Пример на
1 ? 2, 1 ? 3…, 1 ? n,
2 ? 3, 2 ? > 4…, 2 ? n,
n — 1 ? n,
n ? n ? 1, n ? n ? 2…, n ? 1.
Доказательство максимальности удобно изложить на языке графов. Будем считать утверждения вершинами, а теоремы – ориентированными ребрами. Оставим только ребра, ориентированные в обе стороны. Если бы они образовали цикл, то последняя доказанная в этом цикле теорема следовала бы из предыдущих теорем цикла. Значит, циклов нет. Тогда «двойных» ребер – не более n — 1, поэтому всего доказано не более
Ответ. 1) 5; 2) 9; 3)