50. Груз прошлого

We use cookies. Read the Privacy and Cookie Policy

Вот уже несколько дней, как я практически закончил работу над «РС», внимательно перечитал записки, нанес последние штрихи. Целый месяц я каждое утро просыпался с мыслью о том, что книга вот-вот завершится, что еще день-два, и можно будет вздохнуть с облегчением. Зато теперь, когда пора и в самом деле пришла, меня терзают сомнения — довел ли я свой труд до конца? Ведь, по правде говоря, на один вопрос я так и не нашел ответа. Я хотел понять, какие конкретно события или обстоятельства заставили хозяина так резко переменить ставки: предпочесть математику медитации, не побоявшись пойти наперекор довольно значительным силам внутренней инерции. В последнее время мои мысли сами собою настойчиво возвращаются к этому вопросу, несмотря на то, что в эти дни я уже как будто переключился на размышления иного порядка (например, о конформной геометрии). Пока волна медитации еще не унеслась от меня, подбросим ей последние обрывки сомнений, чтобы уж вычистить все до конца.

Когда я пытаюсь «наугад» представить себе, что за события могли натолкнуть меня на мысль о том, чтобы снова взяться за математику (всерьез, в расчете провести за работой по крайней мере несколько лет), мне приходят в голову несколько возможных ответов. Первый из них, и наиболее убедительный — хроническая неудовлетворенность, не оставляющая меня вот уже шесть или семь лет в моей работе с учениками. С этим же у меня связано ощущение неполной занятости, которое с годами становилось все острее. Иногда мне казалось, что я понапрасну стараюсь передать лучшее, что во мне есть, моим угрюмым ученикам: то, что им предложено, они берут безо всякого интереса (и никогда не просят добавки).

Повсюду, куда ни посмотри, я видел великолепные задачи, которые, кажется, сами просились в руки. Иногда для того, чтобы к ним подступиться, хватило бы смехотворно малого запаса знаний: они сами готовы были подсказать тебе и слова языка, на котором нужно о них говорить, и названия инструментов, чтобы их обрабатывать. Не видеть всего этого было бы невозможно просто потому, что, преподавая в университете, я сохранял какую-то связь с миром математики (пусть и на самом скромном уровне), даже в те времена, когда меня это менее всего занимало. Красивые вещи в математике всегда прячутся друг за другом: поднимешь с земли одну — откроется другая, а под ней, в глубине, целая россыпь сокровищ… Да и не в одной математике: куда бы ты ни взглянул с настоящим, живым любопытством, тебе откроются недра, полные тайн, и ты почувствуешь, что их богатства неисчерпаемы. Но мне не удавалось передать это чувство ученикам — потому-то я и оставался неудовлетворенным своей работой. Я не мог зажечь в них ни малейшей искры желания взять в руки хотя бы то, что лежало прямо перед глазами. А ведь они так или иначе решили провести месяцы, а то и годы (столько, сколько понадобится, чтобы подготовить необходимый диплом) в «научной работе» — так почему же не предаться ей от души, с увлечением? Между тем, если не считать двоих-троих, никому из моих учеников за последние десять лет это и в голову не приходило. Месяцами, даже годами, они топтались на месте, опустив руки, или мучительно пробивались вперед, как крот в твердой земле, прямой дорогой к диплому, не понимая толком, что они видят перед собой и никогда не оглядываясь по сторонам. Все это симптомы творческого паралича, сказать о котором вообще можно немало. Эта болезнь не имеет ничего общего с «одаренностью», «способностями» или отсутствием таковых. Это — психологический барьер, и я уже однажды говорил о его причинах. Тогда, в начале вводной главы, я коснулся этой темы лишь мимоходом; здесь есть о чем подумать, но сейчас передо мной стоит иная задача. Итак, отвечая на свой вопрос, я должен констатировать у себя состояние хронической неудовлетворенности, вызванное тем, что за последние семь лет в моей работе с учениками одна и та же история повторялась снова и снова, и выхода из этой ситуации я не видел.

Выход, однако, был, и достаточно очевидный — если не для преподавателя, то по крайней мере для математика. Отчаявшись увлечь своих учеников математическими тайнами, я мог выполнить своими руками хотя бы часть той работы, которую они не желали довести до конца. Время от времени я так и делал: урывками, по несколько часов или даже дней, обдумывал разные вещи, пришедшие мне в голову в ходе работы с учениками. А порой у меня наступали периоды настоящего математического голода (приходившие внезапными, мощными волнами, как будто что-то и впрямь во мне взрывалось…): тогда я неделями, а бывало, и месяцами, размышлял только о математике. Но занимаясь математикой регулярно, от случая к случаю, я мог лишь в общих чертах описать ту или иную проблему, и мое представление о ней оставалось весьма неполным. Точнее, я ясно видел, что нужно сделать, но самый труд был еще впереди. Чтобы лучше разобраться в ситуации, необходимо было взяться за работу всерьез. Два месяца назад я написал краткий обзор основных тем, понемногу захватывавших мое воображение. Получился «Набросок Программы», о котором я уже как-то упоминал. Наряду с этими записками он составит первый том «Размышлений о математике».

Достаточно ясно, что эти короткие разведки математической местности (которые я проводил, что называется, «в частном порядке») сами по себе моей застарелой неудовлетворенности разрешить не могли. Ощущение «неполной занятости», несомненно, шло от желания действовать (вероятно, честолюбивого: чувствуется почерк «хозяина»). Во мне говорил уже не столько преподаватель (который стремился бы «расшевелить» учеников, что-то им передать или хотя бы помочь им заполучить те или иные дипломы, открывающие дорогу к разнообразным должностям в научном мире и проч.), сколько «математик», желающий сказать свое слово в науке, удивить мир неожиданными открытиями, дать развитие такой-то теории и прочее в том же духе. И здесь я снова возвращаюсь к выводу, не так давно мною сформулированному на этих самых страницах: математика, по природе своей — общая, совместная игра. Конечно, все последние десять лет мне и в голову не приходило, что я когда-либо снова соберусь публиковать свои математические находки. В то же время было более или менее ясно, что никто из моих учеников (и будущих, и настоящих) не доведет до конца того, что я наметил в своих «разведках». И все же я не могу сказать, что занимался математикой в те годы для собственного удовольствия, в силу каких-либо причин сугубо личного толка. Мне кажется, где-то в глубине души я всегда чувствовал, что математикой занимаются для того, чтобы передать знания другим: как будто некая башня на твоих глазах строится сообща, и ты приносишь свой камень. Эта «башня» и есть математика, а вернее — наше знание о математическом мироустройстве. Когда я говорю «наше», я думаю прежде всего о математиках, которых я знал и с которыми меня связывали общие интересы. И в то же время образ математической «башни» вбирает в себя нечто несравненно большее, чем все достижения математиков, которых я когда-либо видел и знал: так отдельные камни легко теряются в общей громаде, и часть сливается с целым. Итак, слово «наше» уже приобретает всеобщий, космический смысл: теперь оно относится ко всему роду человеческому, к моим собратьям из всех стран и эпох, которых мир математики однажды поманил своей красотой. Написав последние строки, я впервые подумал об этом. До сих пор я всегда смотрел на свою работу, как на часть некого «целого» — и, однако же, не отдавал себе в этом отчета. И уж во всяком случае я никогда не задумывался о том, как это предчувствие «целого» в том, что я делал, отразилось на моей жизни как математика и преподавателя.

Что же до желания действовать, о котором я говорил, то это для меня значило: извлечь из мрака нечто, никому (и не только мне) не известное, вывести на свет и показать миру — с тем, чтобы моя находка перешла во всеобщее распоряжение, обогатила сокровищницу. Это голос, зовущий меня приложить руку к строительству «башни», прибавить славы и блеска нашей сокровищнице; «целое» превосходит частности, в том числе и мое честолюбие.

Не то, чтобы в этом голосе совсем не звучали честолюбивые нотки. Напротив, здесь с новой силой вступает в игру моя страсть добиваться признания со стороны, всячески утверждая и превознося свою значимость, — словом, известные штуки «хозяина» во мне. Его тщеславие порой становится весьма утомительным, и даже разрушительным в определенных пределах (44i). И все же у меня нет сомнений в том, что стремление накопить как можно больше вещей, которые (долго ли, коротко ли) носили бы мое имя, не способно заглушить или «перекрыть» собою куда более мощную силу, влекущую меня к строительству общей башни. А ведь сознание того, что его трудами растет высокое здание — лучшая награда иному работнику. Признание, поощрение других мастеров ему, быть может, не так уж нужно. В моей собственной «мастерской» хозяин, предпочитающий более солидные вознаграждения, пожалуй, слишком назойлив (уж он-то не забудет поставить подписи под работой!), но ведь это, в сущности, вопрос зрелости. А может быть, анонимный труд был бы для меня «высшей» формой самовозвеличения, которого я достиг бы, отождествив себя с тем, что неизмеримо превосходит мое «я» по своей космической значимости. Может быть — разве что природа этой силы на деле тоньше и глубже, разве только она выражает истинную потребность духа, не зависящую от внешних условий. Не это ли связывает каждого из нас со всем человеческим родом и придает смысл жизни каждого отдельного существа? Я не знаю ответа на этот вопрос; искать его сейчас — значит далеко отступать от темы.

Ведь моя цель — в том, чтобы исследовать ситуацию более скромного масштаба, касающуюся меня лично. Итак, преподавательская работа неизменно приносила мне чувство неудовлетворенности. Иногда мне удавалось ненадолго прогнать его (да и то, лишь отчасти), поразмыслив наедине с собою над тем или иным математическим вопросом, от которого отказались ученики. Логика событий рано или поздно должна была навести меня на мысль о том, чтобы передать кому-нибудь свои находки. Для того чтобы «разработать» обнаруженные мною рудники, необходимо было всерьез взяться за труд; я же все это время, вплоть до прошлого года, не допускал и мысли о том, чтобы снова на долгий срок предаться математической страсти. Оставался единственный выход: рассказать о тех находках, судьбу которых я принимал особенно близко к сердцу, друзьям-математикам, «понимающим толк» в соответствующей области.

Думаю, что если бы в последние десять лет мне удалось найти среди моих друзей-математиков человека, который, во-первых, стал бы моим постоянным собеседником и источником информации (каким, в значительной мере, был для меня Серр в 50-е и 60-е годы), и в то же время согласился бы передавать дальше ту «информацию», которую он мог бы получать от меня (этого делать Серру никогда не приходилось: в те годы я исправно писал и публиковал работы — то есть сам себе служил «передатчиком»), — что, случись все это так, неудачи в работе с учениками тревожили бы меня намного меньше. Моя неудовлетворенность исчезла бы в миг, и я спокойно предался бы своей новой страсти, по-прежнему возвращаясь к математике лишь изредка и ненадолго. Время от времени я и в самом деле предпринимал попытки отыскать себе такого друга и собеседника. В первый раз (быть может, еще не осознавая своей потребности) я обратился с этой целью к одному из прежних коллег в 1975 г., и в последний — в 1982 г., то есть полтора года назад. По забавному совпадению, в обоих случаях я пытался «пристроить» одну и ту же «программу» по гомологической и гомотопической алгебре (я хотел передать ее в «надежные руки», чтобы она не пропала в безвестности и, быть может, после — кто знает? — в один прекрасный день была доведена до конца). Эта программа зародилась в пятидесятые годы, и к концу шестидесятых у меня сложилось внутреннее убеждение в том, что она совершенно «созрела». В ней давалось предварительное, в общих чертах, развитие той самой темы, которой посвящена работа под названием «В погоне за стеками». Иными словами, это и есть тема настоящей книги, «Введение» к которой я пишу сейчас, вот на этих самых страницах! Как бы то ни было, мои попытки вновь обрести в математическом мире такого неоценимого собеседника (каким был для меня, до 1970 г., Серр, и позднее — Делинь) по разным причинам провалились все до одной. У каждой из них была своя история, но по сути, я всякий раз хоть и искал общения с «действующими» математиками, но сам не желал уделять математике как таковой достаточно сил и времени. И уж по крайней мере, в 1975 и позднее, в 1982 г., мой внутренний настрой, безусловно, не способствовал тому, чтобы беседа пошла на лад. В самом деле, я тогда стремился лишь «пристроить» некую вещь — и ничего сверх того. Стоя в стороне от событий математического мира, я многое упустил за все эти годы, но наверстать упущенное отнюдь не стремился. Для «действующего» математика, разбирающегося в современных методах гомотопической алгебры несравненно лучше меня, я был плохим собеседником.

«Письмо к…», ставшее первой главой книги «В погоне за стеками» (я написал его в феврале прошлого года, то есть немногим больше года назад), я мог бы счесть своей последней попыткой добиться от кого-нибудь из прежних друзей отклика на мои позднейшие идеи и мысли о математике. Так вышло, что письмо само собой перешло в записки — и возник мой первый за все это время (считая с 1970 г.) математический текст, предназначенный к публикации. На «Письмо…», на мой взгляд, с математической точки зрения весьма содержательное, я получил что-то вроде ответа лишь год спустя (ср. примечание (38)). И этот ответ оказался, в известном смысле, куда убедительнее, чем все прочие письма, какие я получал до тех пор от коллег-математиков. По нему одному я мог судить ясно и недвусмысленно о том, какие чувства по отношению к моей скромной персоне сделались нормой в кругу моих прежних друзей-математиков с тех пор, как я покинул математический мир. Я писал к этому человеку, обращаясь к нему, как к давнему другу, искренно, с сердечною теплотой. В ответном письме нарочито явственно прозвучала насмешка. Когда я прочел его, переживания недавних лет нахлынули на меня с новою силой. Тогда, раньше, я не раз замечал, что мои старые знакомые, и прежде всего друзья из «большого мира» математики, все чаще и чаще как бы отодвигались от меня, начинали относиться ко мне прохладнее. Но здесь речь идет уже не столько о личной дружбе, сколько об отношениях на «профессиональном» уровне, между коллегами. Среди более или менее «понимающих толк» математиков возникло и словно бы вошло в моду некое соглашение — и стало законом, как нечто само собой разумеющееся. Разумные люди сошлись на том, что математику в «блоках» по тысяче страниц каждый, да и все те понятия, которыми я забивал им голову в течение одного-двух десятилетий (46,47), в конце концов, не стоит принимать всерьез: эти, в сущности, пустяки и так в свое время наделали чересчур много шума. Довольно одних нагромождений «абстрактной чепухи» вокруг понятий схемы и этальных когомологии (которые все же иногда оказываются как нельзя кстати — увы, приходится признать); обо всем остальном, по крайней мере, можно позабыть с легким сердцем. Те же, кто, вопреки здравому смыслу, не говоря уже о правилах хорошего тона, все еще трубят в гротендикие трубы, подбирая их где-то на свалке, заслуживают участи своего учителя (даже если они формально не числятся у него в учениках). И поделом…

Конечно, новые и новые свидетельства тому, что соглашение (которое я только что описал «открытым текстом», без обиняков) работает безотказно, отнюдь не оставляли меня равнодушным. Начиная с 1976 г. (50), они все чаще и чаще долетали ко мне с разных сторон, и вот уже два-три года как идут ко мне отовсюду непрерывным потоком. В конце концов во мне проснулась бойцовская жилка, приутихшая и задремавшая было за последние десять лет. Мне захотелось броситься в рукопашную, приструнить этих молокососов, ни капли не смыслящих в чем бы то ни было, — словом, невеселые вести пробудили во мне самый что ни на есть дурацкий рефлекс быка, взбешенного видом красной тряпки. Казалось бы, иди спокойно своей дорогой — ан нет, он уж роет копытом землю, мотает головой и готов вот-вот броситься на «врага». Хотя мне все же думается, что этот «боевой инстинкт» — вещь неглубокая, и ради него одного я не сошел бы с дороги, не оставил бы медитации. К тому же (и к счастью), занятие математикой само по себе достаточно увлекательно, и оно явно не сводится к тому, чтобы с заостренной палкой в боку, позабыв обо всем, гоняться за красной тряпкой. Конечно, все зависит от подхода к работе: в том, как я занимаюсь математикой, пожалуй, есть что-то от борьбы с ветряными мельницами. Идти наперекор общему представлению о математике, отказавшись от формального стиля работы, увлекаться лишь «несерьезными» вещами (в глазах коллег) — в этом есть и вызов, и самоутверждение перед лицом насмешки. Безусловно, в известном смысле я сам виноват в том, как меня и мои идеи сегодня встречают в математическом мире. В свое время мои друзья, вероятно, чувствовали во мне некое пренебрежение, обращенное если не к ним самим, то по крайней мере к математической среде в целом — а ведь они по-прежнему считали ее своей и принимали ее устои без оговорок. И та насмешка, которую я сегодня читаю на лицах и в письмах, родилась в ответ на мои собственные слова, на мое поведение в тот год, когда я уходил из мира математиков. Итак, уголок красной тряпки все же маячит впереди, и приходится признать, что я сбился с дороги. На моем пути у самого горизонта меня ждут совсем иные проводники.

В последние недели я не раз задумывался о том, что же уводит меня с дороги (вероятно, эта же забота и сегодня задала ритм моему размышлению). Попутно я понял, что мною в этом руководит еще одно стремление, в котором нет ни капли пресловутого «боевого инстинкта», хотя амбиций иного толка, пожалуй, немало. Мне хотелось бы придать настоящий смысл своему труду последних десяти-двенадцати лет в математике: внутреннее убеждение говорит мне, что такая работа — нечто большее, чем простое развлечение на досуге. Природа этого желания пока что мне не ясна, я еще ни разу не задумывался над этим всерьез. Но одно несомненно: как показало это раздумье, сила, в свое время «качнувшая весы» в сторону математики, кроется именно здесь. Тореадоры с красными тряпками ей не указ: она действует сама по себе. Быть может, ее присутствие — признак того, что я не сумел вырваться из заколдованного круга, стать в стороне от своего прошлого? Но тогда речь идет о недавнем прошлом, а не о том далеком, «до 1970 г.»: ведь эта сила пришла ко мне из десяти только что прожитых лет. Прошлое завершенных, написанных по всем правилам, напечатанных черным по белому работ меня не тревожит и не зовет.

По сути, мне безразлична судьба готовых вещей: что ждет их в будущем, сохранят ли их «потомки» (есть ли будущее у наших потомков — тоже вопрос…). Меня интересует не то, что я сделал, а то, чего я не сделал, не довел до конца. Тогда, в прошлом, перед моим мысленным взором развернулась огромная картина будущего труда. Из той обширной программы мне удалось выполнить, как своими усилиями, так и с помощью друзей и учеников, лишь ничтожно малую часть. Позднее, неожиданно для меня самого, эта программа пережила обновление, и вместе с ней изменилось мое собственное представление о математике, мой подход к математическому труду. Прежде я, как правило, брался за серьезные задачи по заложению основ в той или иной области математики — труд кропотливый и тщательный. Нынче же темы, о которых я говорил, выходят на первый план. Пришла пора исследовать тайны, влекущие меня за собой с особенной силой: например, загадки «мотивов» или проблемы «геометрического» описания группы Галуа Q/Q. Само собою, попутно мне так или иначе предстоит заложить кое-где основы будущих зданий — по крайней мере, набросать план в общих чертах. «Долгий поход сквозь теорию Галуа», как и книга, которую я пишу сейчас, «В погоне за стеками», уже содержит такие наброски. И все же, это работа совсем иного толка: цель не та, и самый стиль изложения изменился.

Иначе говоря, в эти последние годы, лишь изредка оборачиваясь в сторону математических ручьев и долин, я видел сквозь туман тайные, призрачные очертания неведомых зданий и предчувствовал их несказанную красоту. Я знал, что эта красота — не для меня одного, что я должен о ней рассказать. Самый смысл ее — в том, чтобы ее увидели люди, чтобы знание о ней усваивалось, передавалось из уст в уста… Но рассказать о ней словами, хотя бы себе самому — значит развить сюжет, придать картине глубину перспективы; это труд. Конечно же, я знаю, что мне одному и за сотню лет не завершить этой работы. Но подобает ли нам беречь и высчитывать годы — те, что нам осталось прожить, открывая мир? Месяцы ли, годы ли заберет у меня математика — моя ли это забота? Другая работа тем временем будет ждать моих рук — труд, на сей раз предназначенный лишь мне одному. Жизнь моя сама выберет себе русло, и я не волен, да и не в силах, стать на пути у текущих лет.

Больше книг — больше знаний!

Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ