Приложение Фигурные числа
Приложение
Фигурные числа
Фигурное число — это число, которое может быть представлено в виде точек, расположенных в форме правильного многоугольника. Эти числа долгое время служили объектом пристального внимания математиков. Греки приписывали им магические свойства, связанные с их особой формой, а Диофант посвятил им отдельный труд.
Треугольное число можно представить в виде равностороннего треугольника:
Получим последовательность 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91,105…
Общая формула приведена справа от иллюстрации.
Квадратные числа можно представить в форме квадратов:
Получим последовательность 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225… Общая формула — n2.
Пятиугольные числа можно представить в виде пятиугольников:
Получим последовательность 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330… Общая формула приведена на рисунке.
Аналогично можно получить шестиугольные, семиугольные числа и так далее.
Ферма первым понял, что любое натуральное число можно представить как сумму максимум трех треугольных, четырех квадратных, пяти пятиугольных чисел и так далее. Данные, представленные в следующей таблице, позволяют убедиться, что это соотношение выполняется для треугольных и пятиугольных чисел.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Приложение Доказательства
Приложение Доказательства 1. Доказательство основной теоремы арифметикиТеорема утверждает, что любое натуральное число, отличное от 1, может быть единственным способом выражено в виде произведения простых чисел. Сначала мы должны объяснить, почему единица не считается
Приложение. Разговор с «Элизой»
Приложение. Разговор с «Элизой» В первой главе мы уже привели короткий разговор с «Элизой» — «автоматическим психологом», созданным Джозефом Вейценбаумом. В этом приложении я приведу запись еще одного реального разговора, на этот раз более продолжительного, чтобы
Приложение. Таблица цифръ.
Приложение. Таблица цифръ. 1. Гіероглифнческія цифры египтянъ. 2. Гіератическія цифры ?гяитянъ: 3. Народныя цифры египтянъ. 4. Халдейскія цифры. 5. Китайскія цифры: А) старинныя, В) современныя. 6. Научныя цифры китайцевъ. 7. Цифры среднев?ковыхъ астрологовъ 8. Еврейскія
§ 4. Фигурные числа
§ 4. Фигурные числа В теории чисел мы часто встречаемся с квадратами, т. е. такими числами, как32 = 9, 72 = 49, 102 = 100,и аналогично с кубами, т. е. такими числами, как23 = 8, 33 = 27, 53 = 125. Рис. 2.Этот геометрический образ рассматриваемой операции с числами является частью богатого
ПРИЛОЖЕНИЕ. ВСЁ ЭТО — ШЕДЕВРЫ
ПРИЛОЖЕНИЕ. ВСЁ ЭТО — ШЕДЕВРЫ В настоящем сборнике представлены наши переводы некоторых Кэрролловых сочинений, не знакомых доселе русскоязычному читателю. Первоначально мы не думали, что когда-либо нам придётся приступить также к работе над сказками об Алисе, так как,
Приложение. Эйлер и бесконечно малые
Приложение. Эйлер и бесконечно малые Чтобы показать, как используются бесконечно большие и малые величины, приведем пример разложения функции ez в степенной ряд. Этот пример продемонстрирован Эйлером в книге «Введение в анализ бесконечно малых». Сначала Эйлер определяет