Как доказывается результат Эрдеша – Реньи

Глубокие математические доказательства часто строятся на очень простых интуитивных идеях. Результат Эрдеша – Реньи – блестящий пример данной закономерности[11].

Математики заметили, что наиболее вероятный способ разрушить связность сети – отрезать один узел от всех каналов связи. Группу узлов отрезать гораздо труднее, потому что число каналов, которые связывают ее и остальную часть сети, относительно большое. Маловероятно, что все эти каналы недоступны. Тогда изначально сложный вопрос:

С какой вероятностью разрушится связность сети?

сводится к гораздо более простому вопросу:

С какой вероятностью хотя бы один из узлов потеряет все свои каналы связи?

Чтобы доказать, что эти вероятности приблизительно равны, понадобятся длинные и нетривиальные математические выкладки. Но доказать это можно, и усилия оправдываются, потому что второй вопрос гораздо проще первого.

Например, если у нас 100 узлов и вероятность помехи 0,96, то каждый узел может оказаться оторванным от всех 99 других узлов с вероятностью

(0,96)99 (?100 %)

Это очень специфическое выражение: число, близкое к единице, возведенное в большую степень. Такие выражения хорошо известны в математике и относятся к так называемым замечательным пределам, из которых, по сути дела, и следует результат.