Задачи и упражнения.

We use cookies. Read the Privacy and Cookie Policy

1. Любая матрица является прямоугольной таблицей. Справедливо ли обратное утверждение, т.е. можно ли считать всякую прямоугольную таблицу матрицей? Если нет,то какие дополнительные требования выдвигаются с позиций матричной алгебры?

2. Какие из приведенных ниже совокупностей объектов представляют собой матрицы:

3. Укажите, какие из приведенных ниже матриц являются равными между собой (при x=2)%

4. При каком значении x матрицы А и В равны:

5. Найти сумму А + В и разность А — В матриц:

6. Найти произведения АВ и ВА и сравнить полученные результаты для матриц:

- 42 -

7. Проверить дистрибутивность умножения слева А(В + С) = АВ + АС и справа (А + В)С = АС + ВС относительно сложения для следующих матриц:

8. Найти все матрицы, перестановочные с матрицей

9. Каким условиям в общем случае должны удовлетворять элементы квадратных матиц А и В второго порядка, чтобы они были перестановочными (АВ = ВА)? Как выглядят эти условия для случая, когда А симметричная матрица?

10. При каких условиях справедливы матричные соотношения:

(A + B)2 = A2 + 2AB +B2; (A-B)(A+B) = A2 — B2?

11. Каким условиям должны удовлетворять элементы ненулевых квадратных матриц А и В, чтобы АВ = 0?

12. К каким типам относятся матрицы:

13. Построить транспонированную At, комплексно-сопряженную A̅ и сопряженную А* для матрицы

14. Показать, что матрица

является эрмитовой. Что можно сказать о диагональных элементах любой эрмитовой матрицы?

15. Какого типа должна быть квадратная матрица А, чтобы она была перестановочной с диагональной матрицей D того же порядка, т.е. чтобы AD = DA?

16. К какому типу относятся треугольные матрицы, если они кроме того: а) симметричные, б) кососимметричные?

17. Показать, что (A̅B̅) = A̅ B̅ и (AB)* = B* A*.

18. Проверить соотношение (AB)* = B*A* для матриц задачи 6в.

19. Показать, что произведение AAt существует для любой матрицы А и является симметричной матрицей.

- 43 -

20. Для заданных матриц найти обратные и проверить соотношение AA-1 = 1:

21. Найти матрицы, обратные заданным, и проверить соотношение (AB)-1 = B-1A-1:

22. Дана система уравнений:

Записать эту систему в матричной форме Ax = q, вычислить обратную матрицу А-1 и записать решение системы.

23. Зависимости между токами и напряжениями четырехполюсника (рис. 6, а) можно представить одной из систем уравнений:

Рис. 6. Соединение четырехполюсника: а — четырехполюсник; б — последовательное соединение; в — параллельное соединение.

а) Записать эти уравнения в матричной форме и установить зависимости между элементами матриц:

б) Показать, что матрица А последовательного соединения четырехполюсников (рис 6. б) равна произведению их матриц A' и A'', т.е. A = A' A'' (в порядке следования).

в) Показать, что матрица Y параллельного соединения четырехполюсников (рис. 6, в) равна сумме их матриц Y' и Y'', т.е. Y = Y' + Y''.

- 44 -

24. Выполнить умножение матриц, воспользовавшись разбиением их на блоки:

Проверить результат непосредственным умножением матриц.

Больше книг — больше знаний!

Заберите 20% скидку на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ