11 Воображаемые миры

We use cookies. Read the Privacy and Cookie Policy

В начале XVI в. семена, посеянные Фибоначчи, начинают приносить свои плоды с появлением нового поколения математиков, возобновивших алгебраические исследования арабских ученых. Именно они в конечном счете смогли решить уравнения третьей степени совершенно невероятным способом.

Эта история началась в XVI в. с работ коммерсанта и профессора арифметики Болонского университета Сципиона дель Ферро. Он занимался исследованиями в области алгебры и был первым, кто смог описать решение уравнений третьей степени. Увы! В то время принцип повсеместного распространения знаний, который преобладал в арабском мире, еще не был распространен в Европе. Преподаватели Болонского университета плели интриги в борьбе за профессорский пост. Для того чтобы оставаться лучшим и не потерять свое место, дель Ферро стремился сохранить исследования в секрете от конкурентов. Он описал свое открытие, но не опубликовал его и посвятил в тайну исследований только нескольких учеников, которые, как и он, держали все в тайне.

Когда математик из Болоньи умер в 1526 г., итальянское математическое сообщество даже не догадывалось о том, что решение кубических уравнений уже найдено. Многие из ученых продолжали верить, что такие уравнения неразрешимы. Тем не менее один из учеников дель Ферро по имени Антонио Мария дель Фьоре, который был удостоен доверия своего учителя, не мог не воспользоваться его открытием. Он начал бросать вызов математикам из других стран, заключавшийся в основном в решении уравнений третьей степени. Разумеется, он выигрывал каждый раз. В результате слух о существовании решения постепенно начал распространяться по свету.

В 1535 г. дель Фьоре бросил вызов венецианскому ученому по имени Тарталья. Тому было 35 лет, и тогда еще не были опубликованы его важнейшие научные труды. Дель Фьоре не знал, что это был ученый, которому предстояло стать одним из лучших математиков своего поколения. Двое ученых направили друг другу список из тридцати вопросов, и поспорили на тридцать пиров, которые проигравший должен был закатить в честь победителя. В течение нескольких недель Тарталья раздумывал над решением уравнений третьей степени, посланных ему дель Фьоре, и за несколько дней до истечения срока ему удалось найти их решение! Он решил все тридцать задач и с легкостью выиграл пари.

История могла закончиться на этом, т. к. Тарталья отказался предать гласности свой метод. Так продолжалось еще четыре года.

Об этой дуэли узнал миланский математик и инженер по имени Джироламо Кардано. Переиначенное на французский манер его имя Жером Кардан, вероятно, знакомо автолюбителям: среди прочего он изобрел универсальный шарнир, используемый в автомобилях для передачи вращения двигателя на колеса. Кардано был среди тех, кто изначально считал невозможным решение уравнений третьей степени. Заинтригованный успехом Тартальи, он захотел встретиться с ним. В начале 1539 г. он отобрал восемь задач и попросил ученого объяснить его метод. Тарталья был категорически против. Кардано рассердился и пытался запугать упрямца, призвав алгебраистов страны осудить высокомерие их коллеги. Тарталья не поддавался.

В конечном счете Кардано пошел на уловку чтобы получить ответ на свой вопрос. Он сказал Тарталье, что маркиз Альваос, губернатор Милана, желает встретиться с ним. Живя в Венеции, Тарталья находился тогда в сложном положении и нуждался в покровителе. Он согласился поехать в Милан, где на 15 марта 1539 г. была назначена встреча в доме Кардано. Тарталья напрасно ждал губернатора в течение трех дней. Этого времени хватило, чтобы Кардано преодолел недоверие математика. После неустанных переговоров Тарталья в конце концов согласился поделиться своим открытием при условии, что Кардано поклянется никогда не публиковать его. Кардано дал слово и получил ответ на свой вопрос.

Вернувшись в Милан, Кардано начал анализировать полученные формулы. Метод работал, но не хватало самого главного: доказательства. До сих пор никому из математиков не удалось представить доказательство того, что их формулы верны. Именно этой задаче Кардано посвятил последующие годы своей жизни. Он смог это сделать, а один из его учеников, Лодовико Феррари, даже смог обобщить метод решения уравнений четвертой степени! Но данная в Милане клятва не позволяла математикам опубликовать результаты.

Кардано, однако, не отказывался от своих амбиций. В 1542 г. он отправился в Болонью вместе с Феррари, чтобы встретиться с Ганнибалом делла Наве, еще одним бывшим учеником Сципиона дель Ферро. Между ними тремя состоялась беседа, в ходе которой делла Наве показал им свои записи доказательства выведения формул; он утверждал, что был первым, кто их получил. Кардано решил, что теперь освобожден от данной клятвы. В 1547 г. он опубликовал свою работу под названием «Арс Магна» (с лат. Ars Magna – «Великое искусство»), которая наконец пролила свет на решение уравнений третьей степени. Тарталья был взбешен и сильно оскорблен поступком Кардано и опубликовал свою версию. Но было уже слишком поздно. Кардано остался в истории как математик, победивший третью степень, а открытая формула получила свое название в его честь.

Отдельные части «Арс Магна», однако, вызывали некоторый скептицизм среди алгебраистов. В ряде случаев формула Кардано, по всей видимости, предполагает вычисление квадратного корня из отрицательных чисел. В середине уравнения может, например, появиться корень из –15, т. е. должно существовать число, квадрат которого равен –15. Но это невозможно, согласно правилу знаков Брахмагупты. Квадрат как положительного, так и отрицательного числа является положительным числом! Так, например, (-2) 2 = (-2) ? (-2) = 4. Нет такого числа, квадрат которого может быть равен –15. Короче говоря, квадратные корни, встречающиеся в примерах Кардано, не существуют. Тем не менее, используя эти несуществующие числа в промежуточных рассуждениях, по методу Кардано, удается получить верный результат! Необычно и интригующе.

Еще один математик из Болоньи, Рафаэль Бомбелли, предположил, что квадратным корнем из отрицательных чисел вполне может быть совершенно новый вид чисел. Это и не положительные, и не отрицательные числа! Необычные числа, о которых ничего не известно, предположить существование которых до настоящего момента было невозможно. После появления нуля и отрицательных чисел огромное множество чисел снова собирается расширяться.

В конце жизни Бомбелли написал свою основную работу, «Алгебра», которая была опубликована в год его смерти (1572). Взяв за основу книгу «Арс Магна», он дополнил ее новыми элементами, которые назвал комплексными числами. Бомбелли сделал нечто подобное тому, что уже однажды совершил Брахмагупта, когда ввел понятие отрицательных чисел. Он описал правила, позволяющие выполнять различные действия с комплексными числами, включая возведение во вторую степень и нахождение отрицательных чисел.

Судьба комплексных чисел Бомбелли была во многом схожа с судьбой отрицательных чисел. Они также вызвали волну скепсиса и недоверия. И, так же как и отрицательные числа, их в конце концов признали революционным достижением в мире математики. Одним из таких скептиков в начале XVII в. был французский математик и философ Рене Декарт. Именно он дал этим числам название, которое мы используем до сих пор: мнимые числа.

Пройдет два столетия, прежде чем мнимые числа будут признаны всем математическим сообществом. Так они станут неотъемлемой частью современной науки. Помимо решения уравнений, эти числа будут применяться в физических науках, в том числе в изучении волновых явлений в электронике или квантовой физике. Без мнимых чисел появление многих современных технологий было бы невозможным.

Однако, в отличие от отрицательных, мнимые числа в основном остаются неизвестными за пределами научных кругов. Их сложно себе представить на интуитивном уровне, трудно спроектировать на простые физические явления. Если отрицательный результат еще можно представить как долг или дефицит, то для того, чтобы понять, что такое мнимые числа, придется отказаться от осознания чисел в количественных категориях. Эти числа неприменимы в повседневной жизни для подсчета яблок или овец.

Мнимые числа постепенно расширяли поле для исследований математиков. В конце концов, если достаточно только признать существование квадратных корней из отрицательных чисел для того, чтобы принять новый вид чисел, почему нельзя пойти дальше? Разве нельзя создавать неограниченное число новых чисел с новыми арифметическими свойствами. Нельзя ли тогда ввести новые, полностью независимые алгебраические структуры чисел, отличные от классических?

В XIX в. были сняты последние ограничения применения математических действий по отношению к любым числам. Таким образом, алгебраическая структура становится не более чем математической конструкцией, состоящей из элементов (которые мы можем назвать цифрами в определенных случаях) и операций, которые могут быть совершены в отношении этих элементов (которые могут быть названы сложением, умножением и т. д. в соответствующих случаях).

Такой подход привел к появлению многочисленных новых исследований. Новые, более или менее абстрактные алгебраические структуры уже были обнаружены, изучены, классифицированы. Учитывая масштабы задачи, математики Европы и мира начали обмениваться опытом. Даже сегодня многие алгебраические исследования продолжают проводиться по всему миру, и многие гипотезы остаются недоказанными.

Создайте собственную математическую теорию

Вы когда-нибудь мечтали, чтобы одна из теорем носила ваше имя, как теоремы Пифагора, Брахмагупты или аль-Каши? Тогда вам повезло, потому что я собираюсь рассказать, как создать и развивать собственную алгебраическую систему. Для этого вам понадобятся две составляющие: список элементов, а также действие, позволяющее производить с ними операции.

Возьмем, например, восемь элементов и отметим их следующими символами: ?, ?, ?, ?, ?, ?, ? и ?. Нам также нужен будет знак для обозначения действия. Возьмем, например, ? и назовем его в честь итальянского ученого: бомбеллиация. Для определения результата бомбеллиации двух элементов мы должны построить соответствующую таблицу. Начертим таблицу, состоящую из восьми строк и восьми столбцов для наших восьми элементов, и заполним ее, помещая на пересечении двух символов результат из бомбеллиации.

Вуаля! Ваша теория готова, осталось только изучить ее. Посмотрев на пересечение второй строки и четвертого столбца, например, можно увидеть, что в результате бомбеллиации ? и ? получается ?. Другими словами, ? ? ? = ?. Вы даже можете решать уравнения в вашей теории. Например:

Найдите число, которое при бомбеллиации с ? дает ?.

Чтобы найти решение этого уравнения, достаточно посмотреть на нашу таблицу. Можно сделать вывод, что у него есть два решения: ? и ?, т. к. ? ? ? = ? и ? ? ? = ?.

Однако будьте внимательны, потому что в нашей новой теории некоторые свойства, которые мы использовали раньше, могут стать ложными. Например, результат может отличаться в случае изменения порядка элементов в бомбеллиации: ? ? ? = ? в то время как ? ? ? = ?. В этом случае говорят, что операция не коммутативная.

Присмотревшись внимательнее, вы обнаружите некоторые более общие свойства. Например, при бомбеллиации элемента с самим собой результат будет равен этому элементу: ? ? ? = ?, ? ? ? = ?, ? ? ? = ? и так далее. Эту закономерность можно считать первой теоремой нашей новой теории!

В общем, принцип должен быть вам понятен. Если вы хотите создать ваши собственные теоремы – пожалуйста. Разумеется, вы можете взять такое количество элементов, какое пожелаете. Даже бесконечное их число, если захотите. Вы можете создать более сложные системы, как и в случае целых чисел, которые не имеют специального символа, а составлены из десяти индийских цифр. Вы можете затем создать правила подсчета, которые будут выступать в роли аксиом в вашей теории. Например, определяя свойства вашей алгебраической системы, можно сделать операции коммутативными.

Разумеется, не стоит обманывать себя, рассчитывая на то, что ваша теория останется в истории. Не все математические модели одинаковые! Некоторые из них являются более полезными и важными, чем другие. Создавая таблицу с действиями случайным образом, помните: есть большая вероятность, что эта система окажется совершенно неинтересной. Если же это не так, то можно держать пари, что другие математики уже изучили ее до вас. Нужно, так или иначе, отдавать себе отчет в том, что математика – это призвание!

Как распознать интересную теорию? На протяжении всей истории для этого существовало два критерия, которыми руководствовались математики в своих исследованиях: применимость и красота.

Применимость – это, разумеется самый очевидный фактор. Возможность использовать результат проведенной работы – это первоочередной критерий с математической точки зрения. Числа полезны, так как и их помощью можно считать и осуществлять торговлю. Геометрия позволяет измерять различные величины. С помощью алгебры можно решать проблемы повседневной жизни.

Красота – это менее конкретная характеристика. Как математическая теория может быть красивой? Это еще можно понять в отношении геометрии, где определенные фигуры могут быть визуально оценены как произведения искусства. В качестве примера можно привести орнаменты из Месопотамии, Платоновы тела или мощение Альгамбры. Но в алгебре? Может ли алгебраическая структура в самом деле быть красивой?

Долгое время я считал, что понимание элегантности и поэзии математических объектов – это привилегия немногих специалистов, истинных ценителей, которые провели достаточно времени за изучением различных теорий и со зрелым пониманием вопроса могли бы поистине насладиться красотой математики. Я заблуждался и уже совсем скоро смог убедиться, что даже новички и очень маленькие дети могут осознать это чувство элегантности.

С одним очень ярким примером я однажды столкнулся на занятиях первоклассников. Детям в классе было около семи лет. Им необходимо требовалось распределить треугольники, квадраты, прямоугольники, пятиугольники, шестиугольники и фигуры других форм в соответствии с заданными критериями. Детям предложили подсчитывают число сторон и число вершин этих фигур. У треугольников было три стороны и три вершины, у квадратов и прямоугольников – четыре стороны и четыре вершины и так далее. При составлении этого списка дети быстро заметили теорему: многоугольник имеет равное количество сторон и вершин.

На следующей неделе для анализа были выбраны фигуры более причудливой формы, в том числе приведенный ниже пример.

Возникает вопрос: сколько сторон и сколько вершин у этой фигуры? Большинство в классе говорят, что четыре стороны и три вершины. Развернутый угол на рисунке выше не формирует вершины. Он не острый. Это вообще скорее впадина, чем вершина. Таким образом, в отношении этого вогнутого угла неприменимо утверждение о свойстве сторон и вершин многоугольников, описанное выше. Попросить их назвать эту точку значит заставить дать название новому явлению! Какая идея! Дети начинают обсуждать этот вопрос. У учеников возникают различные идеи в отношении данной точки. Нужно ли давать ей другое имя? Следует ли вообще об этом задумываться? Приводятся аргументы как за, так и против, но в целом, похоже, не удается собрать большинство.

И вдруг один их первоклассников вспоминает теорему. Если это не вершина, то мы больше не можем утверждать, что любой многоугольник имеет одинаковое количество сторон и вершин. К моему удивлению, именно этот аргумент объединяет класс. Уже через мгновение все были согласны: необходимо считать эту точку вершиной. Эта теорема достаточно проста и наглядна, но и она, к сожалению, имеет свои исключения. Так я стал свидетелем того, что даже маленькие дети понимают красоту математических теорем.

Исключения из общего правила – это всегда некрасиво. Они не могут не раздражать. Чем закономерность более простая и применимая, тем большее впечатление она производит. Красота математики может выражаться по-разному, но в целом может быть сведена к простоте в формулировках в отношении сложных явлений. Красивая теория – это теория, простая в описании, не имеющая отклонений, исключений, спорных моментов и лишенная избыточных деталей. Это теория, имеющая обширное применение, которая при этом может быть изложена кратко, что и делает ее безупречной.

Пример с многоугольниками весьма примитивен, но, развиваясь, новые теории становятся еще красивее, сохраняя при этом закономерности, которые могут быть сведены к нескольким простым принципам. Удивительно и то, что новые теории еще более стройны и закономерны, чем появившиеся в эпоху Античности, что противоречит логичному предположению обратного. Мнимые числа – яркий тому пример.

Помните уравнения второй степени? Решая их способом аль-Хорезми, можно было отыскать два решения, одно решение либо прийти выводу, что уравнение не имеет решений. Все это будет верным, если не брать в расчет мнимые числа. В противном случае любое уравнение второй степени будет иметь два решения! Когда аль-Хорезми утверждал, что уравнение не имеет решений, это было верно, так как в его системе, ограниченной только действительными числами, ответа не имелось. Два решения такого уравнения находятся во множестве мнимых чисел.

Дальше больше. Благодаря открытию мнимых чисел любое уравнение третьей степени имеет три решения, четвертой степени – четыре решения и т. д. Таким образом, количество решений уравнения равно степени этого уравнения. Это открытие сделал немецкий математик Карл Фридрих Гаусс в XVIII в. и привел соответствующее доказательство в начале XIX в. Эту теорему назвали основной теоремой алгебры.

Более чем 1000 лет после того, как аль-Хорезми написал свою работу, после всех неудач в решении уравнений третьей степени, после того, как решение уравнений четвертой степени было немыслимо, т. к. не могло быть представлено в геометрической форме, в конечном счете было сформулировано элементарное правило, состоящее из шести слов: количество решений уравнения равно его степени.

Это одно из следствий открытия мнимых чисел. Не только решение уравнений усовершенствовалось после их появления. После того как начинают использоваться мнимые числа, ряд теорем в одночасье становится более красивыми и лаконичными. Это в целом открыло новые возможности для развития математики. Бомбелли, вероятно, не сомневался, что, открыв комплексные числа, он, тем самым, предоставил математикам будущих поколений огромное поле для исследований.

Математики исследуют свойства новых алгебраических структур, которые появились в XIX в. Общие правила, правила симметрии, аналогии, результаты, которые развиваются и совершенствуются. Небольшая теория, которую мы сформулировали чуть ранее, вряд ли будет соответствовать этим критериям, чтобы стать интересной. В этой теории нет строгих закономерностей, и каждый случай индивидуален. Нет ни общих правил равенства, ни принципов производимых действий. Ну что ж, ничего не поделаешь.

Среди наиболее известных имен современной алгебры можно выделить французского ученого Эвариста Галуа, гения, который погиб в 1832 г. во время дуэли в возрасте всего 21 года. За такую короткую жизнь он смог внести свой вклад в историю развития уравнений. Галуа удалось доказать, что, начиная с уравнений пятой степени, их решение не может быть рассчитано по формулам, аналогичным тем, что вывели аль-Хорезми или Кардано – с использованием только четырех операций, возведения в степень и вычисления корня. Для того чтобы доказать это, он специально создал новые алгебраические структуры, которые до сих пор изучаются и известны как группы Галуа.

Но вот кто, пожалуй, достиг наивысшего успеха в получении алгебраических результатов, пользуясь небольшим числом простейших аксиом, – так это немецкий математик Эмми Нётер. С 1907 г. до своей смерти в 1935-м Нётер опубликовала около пятидесяти статей по алгебре, и некоторые стали настоящим прорывом из-за используемых автором алгебраических структур и теорем. Она главным образом занималась изучением колец, полей и алгебр,[15] т. е. структур, связанных, соответственно, тремя, четырьмя или пятью действиями с соответствующими свойствами.

И вот алгебра достигла такой степени абстракции, которую эта скромная книга уже не в силах охватить. Более подробно об этом можно прочитать в учебных пособиях для студентов университетов или научных трудах.