Глава 14 Пифагор и ферма
Страшила из книги «Волшебник страны Оз» так и не обрел мозги, но получил диплом. Он с гордостью продемонстрировал свой усовершенствованный интеллект, сформулировав абсолютно исковерканную теорему Пифагора: «Сумма квадратных корней из двух сторон равнобедренного треугольника равна квадратному корню из третьей стороны».
На самом деле теорема Пифагора ничего не говорит о равнобедренных треугольниках[147]. Она увязывает длины сторон прямоугольного треугольника (один из углов в этом треугольнике прямой, то есть равен 90°).

Обозначим длины катетов прямоугольного треугольника (то есть сторон, образующих прямой угол) буквами a и b, а длину гипотенузы (стороны напротив прямого угла) – буквой c.
Теорема Пифагора гласит:
a? + b? = c?.
Вот словесная формулировка (несомненно, именно это и намеревался сказать Страшила):
Теорема Пифагора. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов[148].
Наше доказательство будет базироваться на рассечении большой фигуры на малые: мы сгруппируем несколько прямоугольных треугольников в одну фигуру, посчитаем сначала ее площадь, а потом сумму площадей образующих ее фрагментов и – вуаля! – докажем теорему Пифагора.
Расположим четыре одинаковых прямоугольных треугольника с катетами a и b и гипотенузой c так, чтобы они образовали квадрат со стороной a + b:

Очевидно, что площадь квадрата равна (a + b) ? = a? + 2ab + b?.
Теперь рассечем большой квадрат на пять составных частей: малый квадрат со стороной c и четыре треугольника; сложим треугольники попарно в два прямоугольника со сторонами a и b:

Общая площадь этих фигур – c? + 2ab.
Очевидно, что площадь большого квадрата равна площади составляющих его частей:
a? + 2ab + b? = c? + 2ab.
Когда мы вычтем из обеих частей тождества 2ab, теорема Пифагора будет доказана[149].
Вот другое доказательство, тоже основанное на рассечении некой геометрической фигуры.
Расположим четыре одинаковых прямоугольных треугольника так, чтобы они образовали квадрат c ? c:

Общая площадь этой фигуры с?. Посчитайте самостоятельно сумму площадей треугольников и малого квадрата в центре. Ответ вы найдете в конце главы.
Еще одно доказательство на основе рассечения геометрической фигуры придумал Джеймс Гарфилд, 20-й президент Соединенных Штатов[150].
Сгруппируем три прямоугольных треугольника, два одинаковых поменьше и один побольше, чтобы они образовали трапецию[151]:

Посчитайте сначала площадь трапеции, а затем сумму площадей образующих ее треугольников. Ответ – в конце главы.
Абсолютная величина комплексного числа[152]
Вычислить абсолютную величину[153] числа означает лишить его минуса, если оно отрицательное. Например, | – 5 | = 5. Иными словами, число –5 включает 5 единиц.
Более точное определение абсолютной величины:

Например, |12 | = 12, | – 7 | = 7, |0 | = 0.
Вот геометрическая интерпретация: абсолютная величина числа x – это расстояние между точкой с координатой x и точкой с координатой 0 на числовой оси:

Абсолютная величина показывает, насколько число удалено влево или вправо от нуля; знак числа (плюс или минус) не играет роли.

Как мы распространим идею абсолютной величины на комплексные числа? Что значит |3 + 4i|? Мы не можем сказать, отрицательно или положительно число 3 + 4i. Эти термины неприменимы к комплексным числам. Наша цель – выяснить, насколько комплексное число удалено от нуля. Для этого нам необходима геометрическая интерпретация комплексного числа. Действительное число задает точку на числовой прямой; комплексное задает точку на плоскости. Например, комплексное число 3 + 4i можно изобразить геометрически, если отложить три единицы вправо и четыре единицы вверх от начала координат, как показано на рисунке.
Теперь подумаем, что значит расстояние от точки 3 + 4i до начала координат. На рисунке оно обозначено отрезком с двумя стрелочками на концах. Это – не что иное, как гипотенуза прямоугольного треугольника с катетами длиной 3 и 4. Пусть c – длина данной гипотенузы, тогда по теореме Пифагора
с? = 3? + 4? = 9 + 16 = 25.
Таким образом, Вывод: |3 + 4i| = 5.
В общем случае комплексное число a + bi задает точку с координатой a по горизонтали и координатой b по вертикали. Отрезок, соединяющий эту точку с началом координат, представляет собой гипотенузу прямоугольного треугольника с катетами длиной a и b. Если мы обозначим длину гипотенузы буквой c, то получим в соответствии с теоремой Пифагора:

Необходимо отметить, что эта формула работает как для комплексных, так и для действительных чисел[154]. Например, если мы хотим вычислить абсолютную величину числа –4 сложным путем, представим его в комплексном виде: – 4 + 0i. Подставив a = –4 и b = 0 в формулу (A), мы получим:

Пифагоровы тройки
Если катеты прямоугольного треугольника равны 3 и 4, то гипотенуза равна 5. Все это целые числа[155]. Вот другой пример: если длины катетов 5 и 12, то длина гипотенузы –

Все три числа снова оказались целыми. Но так везет не всегда. Если длины катетов – 2 и 3, то длина гипотенузы а это иррациональное число.
Если три положительных целых числа a, b, c являются длинами сторон прямоугольного треугольника, их называют пифагоровой тройкой. Простейшие примеры: 3, 4, 5 и 5, 12, 13. А как насчет других? Как их отыскать? Удивительно, но факт: ключ к пифагоровым тройкам лежит в области комплексных чисел!
Прежде чем погрузиться в детали, посмотрим, как комплексное число z = 2 + i связано с пифагоровой тройкой 3, 4, 5:
• Шаг 1. Вычислим z?:
z? = (2 + i) ? (2 + i) = (4–1) + (2 + 2) i = 3 + 4i.
• Шаг 2. Вычислим |z?|:

Вычисления на шаге 2 показывают, что числа 3, 4 и 5 представляют собой пифагорову тройку. Отрезок на комплексной плоскости, соединяющий начало координат и точку 3 + 4i, – это гипотенуза прямоугольного треугольника со сторонами 3 и 4, ее длина равна 5.
Повторим процедуру с комплексным числом z = 3 + 2i. Посчитаем z? и абсолютную величину этого числа:

Мы нашли пифагорову тройку: 5, 12, 13!
Еще один пример, и мы поймем принцип. Возьмем число z = 5 + 2i. Возведем его в квадрат и посчитаем абсолютную величину получившегося числа:

Мы нашли еще одну пифагорову тройку: 20, 21, 29.
Давайте подумаем, как это работает, вернувшись к первому примеру: z = 2 + i. Заметим: Мы возвели z в квадрат и посчитали абсолютную величину получившегося числа:
Подытожим:

Таким образом, |z?| = |z|?.
Всегда ли так? Разумеется, тождество выполняется для действительных чисел (например, |(–4)?| = |16 | = |–4 |?), но доказательство этого факта для комплексных чисел потребует некоторых алгебраических выкладок (проделайте их самостоятельно и сверьтесь с решением в конце главы[156]).
Вернемся к процедуре поиска пифагоровых троек. Начнем с комплексного числа z = x + yi, где x и y – целые числа[157]. Абсолютная величина z может не быть целым числом, но оно представляет собой квадратный корень из целого числа: Абсолютная величина z? непременно будет целым числом: |z?| = |z|? = x? + y?. Найдем z?:
z? = (x + yi) ? (x + yi) = (x? – y?) + (2xy) i.
Пусть a = x? – y?, b = 2xy, c = x? + y?. Тогда |a + bi| = c; следовательно, a? + b? = c?.
Последний пример: пусть z = 7 + 4i. Его квадрат равен 33 + 56i, абсолютная величина этого числа равна

Еще одна пифагорова тройка: 33, 56, 65.
Я продемонстрировал процедуру поиска пифагоровых троек. Возникает естественный вопрос: все ли пифагоровы тройки можно найти подобным образом? Да, но доказательство этого факта довольно сложное, так что, если вам интересно, я рекомендую обратиться к литературе по теории чисел.
Великая теорема Ферма
Мы рассмотрели тройки целых чисел, удовлетворяющих уравнению теоремы Пифагора. Они лишь косвенным образом связаны с миром прямоугольных треугольников. Сейчас мы полностью перенесемся за пределы геометрии и подумаем о решениях уравнения a? + b? = c?.
Легко найти тройки целых чисел a, b, c, удовлетворяющих соотношению a + b = c. В предыдущем разделе я рассказал о способе поиска троек целых чисел, удовлетворяющих уравнению a? + b? = c?. Сейчас нам предстоит перейти к более высоким степеням: можем ли мы найти тройки целых чисел, удовлетворяющих уравнению a? + b? = c?, или a? + b? = c?, или a? + b? = c? и т. д.?
Вот два неинтересных решения уравнения a? + b? = c?:
5? + 0? = 5?; 5? +(–5)? = 0?.
Куда сложнее найти тройки целых чисел, не равных нулю, которые являются решениями уравнения a? + b? = c?. Такие решения называются нетривиальными.
Этот вопрос в 1637 году заинтересовал Пьера Ферма. На полях «Арифметики» Диофанта он сформулировал следующее утверждение: уравнение a? + b? = c? не имеет нетривиальных целочисленных решений при n ? 3. Он записал по-латыни знаменитые слова:
Невозможно разложить куб на два куба, биквадрат на два биквадрата и вообще никакую степень, большую квадрата, на две степени с тем же показателем. Я нашел этому поистине чудесное доказательство, но поля книги слишком узки для него[158].
Это утверждение известно как великая теорема Ферма, хотя сомнительно, что Ферма мог доказать ее. Потребовалось три столетия, прежде чем Эндрю Уайлс[159] нашел доказательство и опубликовал его в середине 1990-х. Он показал, что теорема Ферма верна и уравнение a? + b? = c? не имеет нетривиальных целочисленных решений при n ? 3.

Больше книг — больше знаний!
Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом
ПОЛУЧИТЬ СКИДКУ