Глава 7 Траляля или Труляля?
Глава 7
Траляля или Труляля?
Следующее приключение Алисы было гораздо более приятным.
– Терпеть не могу эти экзамены, – сказала про себя Алиса, вскоре после того как она рассталась с Королевами. – Они так напоминают мне о школе!
И тут Алиса чуть не налетела на Траляля и Труляля. Братцы ухмыляясь глядели на нее из-под дерева, которое росло рядом с их домиком. Алиса внимательно посмотрела на их воротнички: на одном из них должно было быть вышито «TPA», а на другом – «ТРУ», но на воротничках никакой вышивки не было.
– Боюсь, что без вышитых воротничков я не сумею вас различить, – заметила вслух Алиса.
– Воспользуйся логикой, – посоветовал один из братцев, держа другого в крепких объятиях. – Мы знали, что ты заглянешь в наши края, и приготовили для тебя несколько интересных логических игр. Ты ведь любишь логические игры?
– А что это за игры? – спросила Алиса.
– Мы знаем две игры. Первая называется «Кто из нас Труляля и кто Траляля?». Вторая называется «Кто из нас Траляля и кто Труляля?». С какой игры ты хотела бы начать?
– Оба названия звучат очень похоже, – заметила Алиса. – Их нетрудно спутать!
– Звучат они, может быть, и похоже, – согласился один из собеседников Алисы, – но это еще не значит, что они похожи. Ни в коем разе!
– И задом наперед – совсем наоборот! – добавил другой. – Если бы они были похожи, то не были бы похожи, а если бы они не были похожи, то могли бы быть похожи. Следовательно, они не похожи. Такова логика!
Алиса задумалась.
– Если тебя смущают эти названия, – сказал первый братец, – то должен тебя обрадовать: у каждой из игр есть еще и другое название. Первая игра называется также «Красное и черное», а вторая – «Оранжевое и пурпурное».
– А как играют в эти игры? – спросила Алиса.
– Каждая игра проводится в шесть раундов, – пояснил первый братец. – Сыграем сначала в первую игру – в «Красное и черное».
С этими словами он вынул из кармана игральную карту (это была Королева Бубен) и показал ее Алисе.
– Видишь, эта карта красной масти. Тот, у кого карта красной масти, говорит правду. Тот, у кого карта черной масти, лжет. У моего братца (собеседник Алисы указал на своего соседа) в кармане также карта либо красной, либо черной масти. Он скажет одну фразу. Если у него в кармане карта красной масти, то он выскажет истинное утверждение. Если же у него в кармане карта черной масти, то он выскажет ложное утверждение. Ты должна узнать, кто он – Тру ляля или Траляля.
– Звучит очень заманчиво! – сказала Алиса. – Хотела бы я сыграть в эту игру!
– После того как ты определишь, кто он, тебе еще понадобится определить, кто я! Всенепременно!
– Но это же глупо/ – возмутилась Алиса, рассмеявшись. – Ведь совершенно ясно, что если он Труляля, то вы Траляля, а если он Траляля, то вы просто обязаны быть Труляля. Это вам и последний глупец скажет!
– Совершенно верно! – согласился первый братец. – А теперь за игру!
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Глава 7 Запоминающаяся глава для запоминания чисел[9]
Глава 7 Запоминающаяся глава для запоминания чисел[9] Наиболее часто мне задают вопрос о моей памяти. Нет, сразу скажу я вам, она у меня не феноменальная. Скорее, я применяю систему мнемотехники, которая может быть изучена любым человеком и описана на следующих страницах.
Глава 1
Глава 1 Кто Джон? Для того чтобы узнать, кого из двух братьев-близнецов зовут Джон, нужно спросить одного из них: «Джон говорит правду?». Если в ответ на этот вопрос последует «да», то независимо от того, лжет ли спрошенный близнец или говорит всегда только правду, он должен
Глава 2
Глава 2 1. История первая. По существу, Болванщик заявил, что варенье украли либо Мартовский Заяц, либо Соня. Если Болванщик солгал, то ни Мартовский Заяц, ни Соня не украли варенье. Но тогда Мартовский Заяц, поскольку он не украл варенье, дал правдивые показания.
Глава 4
Глава 4 26. Сколько кренделей у каждого? Назовем одной порцией все крендельки, которые достались Соне, сколько бы их ни было. Тогда Соне досталась 1 порция. Мартовскому Зайцу досталось вдвое больше крендельков, чем Соне (потому что Соню Болванщик посадил на такое место, где
Глава 5
Глава 5 42. Появление первого шпиона. С заведомо не может быть рыцарем, так как ни один рыцарь не стал бы лгать и утверждать, будто он шпион. Следовательно, С либо лжец, либо шпион. Предположим, что С шпион. Тогда показание А ложно, значит, А шпион (А не может быть шпионом, так
Глава 6
Глава 6 52. Первый вопрос. Алиса ошиблась, записав одиннадцать тысяч одиннадцать сотен и одиннадцать как 11111, что неверно! Число 11111 – это одиннадцать тысяч одна сотня и одиннадцать! Для того чтобы понять, как правильно записать делимое, сложим одиннадцать тысяч,
Глава 7
Глава 7 64. Первый раунд (Красное н черное). Если внезапно заговоривший братец сказал правду, то его звали бы Траляля и в кармане у него была бы черная карта. Но тот, у кого в кармане карта черной масти, не может говорить правду. Следовательно, он лжет. Значит, в кармане у него
Глава 9
Глава 9 Во всех решениях этой главы А означает первого подсудимого, В – второго и С – третьего.78. Кто виновен? Из условий задачи известно, что виновный дал ложные показания. Если бы В был виновен, то он сказал бы правду, когда признал виновным себя. Следовательно, В не может
Глава 11
Глава 11 88. Всего лишь один вопрос. Действительно следуют. Рассмотрим сначала утверждение 1. Предположим, некто убежден, что он бодрствует. В действительности он либо бодрствует, либо не бодрствует. Предположим, что он бодрствует. Тогда его убеждение правильно, но всякий,
Глава 7. ТРАЛЯЛЯ И ТРУЛЯЛЯ
Глава 7. ТРАЛЯЛЯ И ТРУЛЯЛЯ Далее с Алисой происходили более приятные события.— Спасу нет от этих экзаменов, — бормотала Алиса себе под нос, распрощавшись с обеими Королевами. — Их мне и в школе хватает!Погрузившись в свои мысли, Алиса едва ненатолкнулась на Траляля и
Глава 1
Глава 1 graphics46 Кто Джон?Чтобы узнать, кто из двух братьев Джон, спросите одного из них: «Джон правдив?» Если он ответит «да», это должен быть Джон, независимо от того, солгал он или сказал правду. Если же он ответит «нет», значит, он не Джон. И вот как это подтверждается.Ответив
Глава 2
Глава 2 graphics48 1. История перваяШляпник заявил, по существу, что повидло украл либо Мартовский Заяц, либо Соня. Если Шляпник солгал, значит ни Мартовский Заяц, ни Соня повидла не крали. Раз Мартовский Заяц кражи не совершал, то он, следовательно, сказал на суде правду.
Глава 3
Глава 3 graphics50 14. Гусеница и Ящерка БилльГусеница убеждена в том, что и она, и Ящерка Билль оба не в своем уме. Если бы Гусеница была в своем уме, то ее суждение о том, что оба они из ума выжили, было бы ложным. Раз так, то Гусеница (будучи в своем уме) вряд ли всерьез могла быть
Глава 9
Глава 9 Для всех решений в этой главе назовем первого подсудимого А, второго — Б и третьего — В. graphics56 78. Кто виновен?Нам дано, что солгал тот, кто был виновен. Если бы это был Б, он сказал бы правду, признав свою вину, поэтому Б не может быть виновным. Если бы виновным был А, то
Глава 11
Глава 11 88. ВопросДа, эти утверждения действительно следуют из теории Черного Короля. Начнем с Утверждения 1. Предположим, некто считает, что он бодрствует. Он либо на самом деле бодрствует, либо спит. Предположим, он на самом деле бодрствует. Тогда его суждение верно, но