Глава 12 Какая Алиса?
Глава 12
Какая Алиса?
– Постойте, постойте! – сказал Майкл. – Уж не думаете ли вы, что я поверю в теорию Черного Короля?
– А почему бы и нет? – поддразнил я его, едва удерживаясь от улыбки.
– Это самая нелепая теория, какую я когда-либо слышал!
– Почему? – невинно осведомился я. – Разве она логически не возможна?
– Разумеется, нет! – отрезал Майкл. – Она же сумасшедшая от начала и до конца!
– Но разве Черный Король не доказал, что его теория правильна? – спросил я.
Последовала продолжительная пауза: мой оппонент погрузился в размышления. Первой молчание нарушила Алиса.
– Не совсем, – заметила она. – Доказательство Черного Короля логически небезупречно.
– Можешь ли ты указать хоть одну логическую ошибку? – спросил я с самым беззаботным видом.
– Все его «доказательство» основано на порочном круге, – рассердилась Алиса. – Тот, кто считает себя принадлежащим к типу А, должен бодрствовать, а тот, кто считает себя бодрствующим, должен принадлежать к типу А! Да такие рассуждения опираются в первую очередь на теорию Короля, а ее правильность «доказывается» с их помощью!
– Очень хорошо! – кивнул я. – Диагноз поставлен верно! В рассуждениях Черного Короля действительно содержится порочный круг!
– Значит, я был прав! – обрадовался Майкл. – Теория Черного Короля ошибочна!
– Вовсе нет! – резко возразил я. – Алиса не доказала, что его теория ошибочна. Ей удалось доказать лишь, что Черный Король не смог доказать правильность своей теории. Но ошибочность предложенного Черным Королем доказательства еще не означает ошибочности самой теории.
– Но это же глупейшая из теорий, которые я когда-нибудь слыхал! – настаивал Майкл.
– Глупая – одно, логически невозможная – совсем другое, – ответил я. – Согласен с тобой, что теория в высшей степени неправдоподобная, но это еще не означает, что она логически невозможна.
– В рассуждениях Короля также есть одна тонкость, которую мне хотелось бы подчеркнуть, – добавил я. – Если бы сам Король принадлежал к типу А или В, то от того, что он убежден в истинности трех доказываемых им тезисов, эти тезисы действительно стали бы истинными! Рассуждения Короля стали бы правильными, если бы мы добавили еще одну исходную посылку, предположив, что Король принадлежит к типу А или к типу В. Если Король принадлежит к одному из этих типов, то отсюда следует, что и любое другое существо также принадлежит либо к типу А, либо к типу В, то есть что теория Короля должна быть правильной.
– Все равно я считаю, что глупее, чем теория Короля, ничего не придумаешь, – сказал Майкл, как бы подводя итог нашему разговору.
Но на этом история не закончилась! Ночью Алисе приснился странный сон. Когда она ложилась спать, в голове у нее еще роилось множество необычных логических задач, которые она услышала за день. В частности, ей не давали покоя замена истины ложью и лжи истиной в рассуждениях зазеркальных логиков и теория Черного Короля.
«Возможно ли в действительности, чтобы теория Черного Короля была правильной? – размышляла Алиса. – Если да, то хотела бы я знать, к какому типу я принадлежу – к типу А или к типу В?».
И тут Алисе приснился сон. Ей снилось, что она не она, а другая Алиса, та, из Зазеркалья. Ей снилось, что она повстречала Черного Короля и указала тому на пробелы в его доказательстве. Он исправил ошибку и предложил Алисе новое доказательство, одной из посылок которого было предположение о принадлежности Короля к типу А или В. (К сожалению, проснувшись на следующее утро, Алиса не смогла припомнить новое доказательство Короля, поэтому я затрудняюсь сказать вам, в чем оно состояло!) Тем не менее во сне Алиса была полностью убеждена, что Король действительно принадлежал либо к типу А, либо к типу В и что, таким образом, всякое живое существо, как следовало из первого доказательства Короля, принадлежало либо к типу А, либо к типу В. Между Алисой и Черным Королем состоялся следующий разговор:
– Существует на свете еще одна Алиса, – сказал Король. – Сейчас она спит, и ей снится, что она – это ты.
– Необыкновенно интересно! – воскликнула Алиса. – А разве не может быть так, что это я сейчас сплю и мне снится, что я – это она?
– Это одно и то же, – ответил Король. – Какая разница?
Замечание Короля поразило Алису! Ей было совсем не понятно, почему это одно и то же.
– Как, по-твоему, какая ты Алиса, та или эта? – спросил Король.
– Сейчас я вряд ли смогу ответить на этот вопрос, – призналась Алиса.
– К какому типу ты принадлежишь – к А или В? – спросил Король.
– Боюсь, что и на этот вопрос я не смогу ответить, – призналась Алиса. – Сейчас я даже не уверена, сплю я или бодрствую.
– Позволь мне подвергнуть тебя небольшому тесту, – попросил Король. – Какого цвета у тебя глаза?
– Карие… Ах нет! Думаю, что они синие… Нет, подождите! Это зависит от того, какая я Алиса. Какая же я Алиса и какого цвета у меня глаза?
– Если позволишь, я бы сформулировал эту задачу так, – предложил Черный Король. – Бармаглот знает и тебя, и другую Алису. Когда Бармаглот спит, он убежден, что у одной из вас глаза карие, а у другой синие. Когда Бармаглот бодрствует, он убежден, что у тебя глаза карие, а у другой Алисы синие. Так скажи мне теперь, какого цвета у тебя глаза?
Решение этой нехитрой задачки я целиком предоставляю вам, дорогой читатель. Какого цвета глаза у Алисы, которую я знаю? А у другой Алисы? И еще: к какому из двух типов (А или В) принадлежит Бармаглот?
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Глава 7 Запоминающаяся глава для запоминания чисел[9]
Глава 7 Запоминающаяся глава для запоминания чисел[9] Наиболее часто мне задают вопрос о моей памяти. Нет, сразу скажу я вам, она у меня не феноменальная. Скорее, я применяю систему мнемотехники, которая может быть изучена любым человеком и описана на следующих страницах.
Глава 1 Какая из Алис?
Глава 1 Какая из Алис? Все началось на дне рождения Алисы. Не Алисы из Страны Чудес, а моей знакомой девочки по имени Алиса. Каким образом в этой истории появилась другая Алиса, вы скоро поймете. Разумеется, на дне рождения были младший брат Алисы Тони, а также ее друзья
Глава 12 Какая Алиса?
Глава 12 Какая Алиса? – Постойте, постойте! – сказал Майкл. – Уж не думаете ли вы, что я поверю в теорию Черного Короля?– А почему бы и нет? – поддразнил я его, едва удерживаясь от улыбки.– Это самая нелепая теория, какую я когда-либо слышал!– Почему? – невинно
Глава 1
Глава 1 Кто Джон? Для того чтобы узнать, кого из двух братьев-близнецов зовут Джон, нужно спросить одного из них: «Джон говорит правду?». Если в ответ на этот вопрос последует «да», то независимо от того, лжет ли спрошенный близнец или говорит всегда только правду, он должен
Глава 2
Глава 2 1. История первая. По существу, Болванщик заявил, что варенье украли либо Мартовский Заяц, либо Соня. Если Болванщик солгал, то ни Мартовский Заяц, ни Соня не украли варенье. Но тогда Мартовский Заяц, поскольку он не украл варенье, дал правдивые показания.
Глава 3
Глава 3 14. Гусеница и Ящерка Билль. Гусеница считает, что и она, и Ящерка Билль не в своем уме. Если бы Гусеница была в здравом уме, то мнение о том, что и она, и Ящерка Билль не в своем уме, было бы ложно. Следовательно, Гусеница (будучи в здравом уме) не могла бы придерживаться
Глава 5
Глава 5 42. Появление первого шпиона. С заведомо не может быть рыцарем, так как ни один рыцарь не стал бы лгать и утверждать, будто он шпион. Следовательно, С либо лжец, либо шпион. Предположим, что С шпион. Тогда показание А ложно, значит, А шпион (А не может быть шпионом, так
Глава 6
Глава 6 52. Первый вопрос. Алиса ошиблась, записав одиннадцать тысяч одиннадцать сотен и одиннадцать как 11111, что неверно! Число 11111 – это одиннадцать тысяч одна сотня и одиннадцать! Для того чтобы понять, как правильно записать делимое, сложим одиннадцать тысяч,
Глава 7
Глава 7 64. Первый раунд (Красное н черное). Если внезапно заговоривший братец сказал правду, то его звали бы Траляля и в кармане у него была бы черная карта. Но тот, у кого в кармане карта черной масти, не может говорить правду. Следовательно, он лжет. Значит, в кармане у него
Глава 9
Глава 9 Во всех решениях этой главы А означает первого подсудимого, В – второго и С – третьего.78. Кто виновен? Из условий задачи известно, что виновный дал ложные показания. Если бы В был виновен, то он сказал бы правду, когда признал виновным себя. Следовательно, В не может
Глава 11
Глава 11 88. Всего лишь один вопрос. Действительно следуют. Рассмотрим сначала утверждение 1. Предположим, некто убежден, что он бодрствует. В действительности он либо бодрствует, либо не бодрствует. Предположим, что он бодрствует. Тогда его убеждение правильно, но всякий,
Глава 1. КАКАЯ АЛИСА?
Глава 1. КАКАЯ АЛИСА? graphics2 Все началось на празднике в честь дня рождения Алисы. Нет, не той Алисы из Страны Чудес, а моей знакомой девочки Алисы. Как в этой истории появилась другая Алиса, вскоре станет понятно. Конечно же, на празднике был и младший брат Алисы Тони, и ее
77. О чем должна спросить Алиса?
77. О чем должна спросить Алиса? — Поздравляем, ты снова выиграла! — хором закричали близнецы.— А теперь подошел черед самой-пресамой интересной игры! Если сумеешь выиграть, получишь приз! — пообещал Труляля.— В этой игре, — начал объяснять он, — неизвестно, кто из нас
Глава 1
Глава 1 graphics46 Кто Джон?Чтобы узнать, кто из двух братьев Джон, спросите одного из них: «Джон правдив?» Если он ответит «да», это должен быть Джон, независимо от того, солгал он или сказал правду. Если же он ответит «нет», значит, он не Джон. И вот как это подтверждается.Ответив
Глава 2
Глава 2 graphics48 1. История перваяШляпник заявил, по существу, что повидло украл либо Мартовский Заяц, либо Соня. Если Шляпник солгал, значит ни Мартовский Заяц, ни Соня повидла не крали. Раз Мартовский Заяц кражи не совершал, то он, следовательно, сказал на суде правду.
Глава 7
Глава 7 graphics54 64. Первый раундЕсли бы братец говорил правду, его звали бы Траляля и у него была бы карта черной масти. Но он не может говорить правду, если у него в кармане карта черной масти. Поэтому он лжет. Это означает, что у него действительно карта черной масти, а