Глава 1
Глава 1

graphics46
Кто Джон?
Чтобы узнать, кто из двух братьев Джон, спросите одного из них: «Джон правдив?» Если он ответит «да», это должен быть Джон, независимо от того, солгал он или сказал правду. Если же он ответит «нет», значит, он не Джон. И вот как это подтверждается.
Ответив «да», говорящий утверждает, что Джон правдив. Если его утверждение истинно, значит, Джон действительно правдив, а раз говорящий тоже сказал правду, он и должен быть Джоном. Если же его утверждение лживо, значит Джон на самом деле не правдив, а лжет точно так же, как и говорящий, следовательно, и в этом случае говорящий должен быть Джоном. Так мы доказали, что, независимо от того, сказал ли говорящий правду или солгал, отвечая на вопрос, именно он должен быть Джоном (в том случае, если он ответил «да»).
Если же на заданный вопрос был получен ответ «нет», значит, ответивший утверждает, что Джон не правдив. Если его утверждение истинно, то Джон не правдив. Если его утверждение ложно, то Джон правдив. В любом из этих двух случаев говорящий не соответствует характеристике, данной им Джону, следовательно, он должен быть братом Джона. Таким образом, ответ «нет» говорит нам о том, что говорящий — не Джон.
Безусловно, если мы сформулируем вопрос иначе («Джон лжет?»), такой вопрос тоже подойдет. Ответ «да» будет означать в
этом случае, что говорящий не Джон, а ответ «нет» укажет на то, что говорящий и есть Джон.
Это единственные вопросы из двух слов, которые мне удалось придумать, чтобы найти решение задачи. Интересно, есть ли другие?
Что касается второй задачи, а именно: найти вопрос, с помощью которого можно определить, лжет ли Джон — вам нужно лишь спросить: «Ты Джон?»
Предположим, что последует ответ «да». Это может быть либо правда, либо ложь. Предположим, это правда. Тогда говорящий и в самом деле Джон, и раз он говорит правду, значит, Джон правдив. С другой стороны, предположим, что ответивший солгал. Тогда он не Джон (ведь его заявление о том, что он Джон, не может быть правдой). Если он лжет и он не Джон, значит, Джоном должен быть его правдивый брат. Таким образом, мы видим, что, если ответ будет «да», то Джон должен быть правдив независимо от того, солгал ли отвечающий или сказал правду.
Предположим теперь, что был получен ответ «нет». Ответивший либо солгал, либо сказал правду. Предположим, он сказал правду. Тогда он действительно не Джон, а Джон — это его брат, и (раз ответивший сказал правду) Джон должен быть тем братом, который лжет. С другой стороны, предположим, что ответивший солгал. В этом случае (ведь он заявляет о том, что он не Джон), на самом деле он и должен быть Джоном, и тогда Джон — это тот, кто лжет. Мы видим, таким образом, что если ответ будет «нет», то, независимо от того, солгал отвечавший или же сказал правду, Джоном должен быть тот, кто лжет.
Решения этих двух задач можно объединить в довольно симпатичное резюме: чтобы узнать, кто Джон, задайте вопрос «Джон лжет?»; чтобы узнать, лжет ли Джон, задайте вопрос «Ты Джон?»

graphics47
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Глава 1
Глава 1 Кто Джон? Для того чтобы узнать, кого из двух братьев-близнецов зовут Джон, нужно спросить одного из них: «Джон говорит правду?». Если в ответ на этот вопрос последует «да», то независимо от того, лжет ли спрошенный близнец или говорит всегда только правду, он должен
Глава 2
Глава 2 1. История первая. По существу, Болванщик заявил, что варенье украли либо Мартовский Заяц, либо Соня. Если Болванщик солгал, то ни Мартовский Заяц, ни Соня не украли варенье. Но тогда Мартовский Заяц, поскольку он не украл варенье, дал правдивые показания.
Глава 4
Глава 4 26. Сколько кренделей у каждого? Назовем одной порцией все крендельки, которые достались Соне, сколько бы их ни было. Тогда Соне досталась 1 порция. Мартовскому Зайцу досталось вдвое больше крендельков, чем Соне (потому что Соню Болванщик посадил на такое место, где
Глава 5
Глава 5 42. Появление первого шпиона. С заведомо не может быть рыцарем, так как ни один рыцарь не стал бы лгать и утверждать, будто он шпион. Следовательно, С либо лжец, либо шпион. Предположим, что С шпион. Тогда показание А ложно, значит, А шпион (А не может быть шпионом, так
Глава 6
Глава 6 52. Первый вопрос. Алиса ошиблась, записав одиннадцать тысяч одиннадцать сотен и одиннадцать как 11111, что неверно! Число 11111 – это одиннадцать тысяч одна сотня и одиннадцать! Для того чтобы понять, как правильно записать делимое, сложим одиннадцать тысяч,
Глава 7
Глава 7 64. Первый раунд (Красное н черное). Если внезапно заговоривший братец сказал правду, то его звали бы Траляля и в кармане у него была бы черная карта. Но тот, у кого в кармане карта черной масти, не может говорить правду. Следовательно, он лжет. Значит, в кармане у него
Глава 9
Глава 9 Во всех решениях этой главы А означает первого подсудимого, В – второго и С – третьего.78. Кто виновен? Из условий задачи известно, что виновный дал ложные показания. Если бы В был виновен, то он сказал бы правду, когда признал виновным себя. Следовательно, В не может
Глава 11
Глава 11 88. Всего лишь один вопрос. Действительно следуют. Рассмотрим сначала утверждение 1. Предположим, некто убежден, что он бодрствует. В действительности он либо бодрствует, либо не бодрствует. Предположим, что он бодрствует. Тогда его убеждение правильно, но всякий,
Глава 1
Глава 1 graphics46 Кто Джон?Чтобы узнать, кто из двух братьев Джон, спросите одного из них: «Джон правдив?» Если он ответит «да», это должен быть Джон, независимо от того, солгал он или сказал правду. Если же он ответит «нет», значит, он не Джон. И вот как это подтверждается.Ответив
Глава 2
Глава 2 graphics48 1. История перваяШляпник заявил, по существу, что повидло украл либо Мартовский Заяц, либо Соня. Если Шляпник солгал, значит ни Мартовский Заяц, ни Соня повидла не крали. Раз Мартовский Заяц кражи не совершал, то он, следовательно, сказал на суде правду.
Глава 3
Глава 3 graphics50 14. Гусеница и Ящерка БилльГусеница убеждена в том, что и она, и Ящерка Билль оба не в своем уме. Если бы Гусеница была в своем уме, то ее суждение о том, что оба они из ума выжили, было бы ложным. Раз так, то Гусеница (будучи в своем уме) вряд ли всерьез могла быть
Глава 4
Глава 4 26. Сколько пирожков?Сколько бы пирожков ни оказалось у Сони, назовем это количество одна порция. Итак, у Сони одна порция пирожков. У Мартовского Зайца вдвое больше пирожков, чем у Сони (в условиях задачи говорится, что Соня получила лишь половину того, что досталось
Глава 7
Глава 7 graphics54 64. Первый раундЕсли бы братец говорил правду, его звали бы Траляля и у него была бы карта черной масти. Но он не может говорить правду, если у него в кармане карта черной масти. Поэтому он лжет. Это означает, что у него действительно карта черной масти, а
Глава 9
Глава 9 Для всех решений в этой главе назовем первого подсудимого А, второго — Б и третьего — В. graphics56 78. Кто виновен?Нам дано, что солгал тот, кто был виновен. Если бы это был Б, он сказал бы правду, признав свою вину, поэтому Б не может быть виновным. Если бы виновным был А, то
Глава 11
Глава 11 88. ВопросДа, эти утверждения действительно следуют из теории Черного Короля. Начнем с Утверждения 1. Предположим, некто считает, что он бодрствует. Он либо на самом деле бодрствует, либо спит. Предположим, он на самом деле бодрствует. Тогда его суждение верно, но