Глава 3. Кто не в своем уме?
Глава 3. Кто не в своем уме?
— В этой стороне, — Кот помахал в воздухе правой лапой, — живет Шляпник. В этой стороне, — и он помахал в воздухе левой лапой, — Мартовский Заяц. Навести кого хочешь, они оба не в своем уме.
— Зачем же вы меня к ним отправляете, если они не в своем уме? — не поняла Алиса.
— Что поделать, — ответил Кот. — Ведь мы тут все ненормальные.
Приключения Алисы в Стране Чудес, глава 6.
Вскоре после суда Алиса повстречала Герцогиню, и у них состоялась весьма содержательная беседа.
— Чеширский Кот утверждает, что здесь все не в своем уме, — сказала Алиса. — Неужели это правда?
— Нет, конечно, — успокоила ее Герцогиня. — Подумай сама, ведь будь это правдой, то и сам Кот был бы не в своем уме и тогда его слова нельзя было бы счесть за правду.
Алисе это показалось весьма логичным.
— Но по большому секрету, — продолжала Герцогиня, — скажу тебе, милочка, что половина здешних обитателей действительно выжила из ума — то есть они совершенно не в своем уме!
— Меня это ни капельки не удивляет, — сказала Алиса, — мне показалось, тут многие не совсем в своем уме!
— Если я говорю совершенно не в своем уме, — сухо заметила Герцогиня, оставив без внимания замечание Алисы, — то именно это я и имею в виду: они полностью выжили из ума! Все их суждения ошибочны — не то чтобы некоторые, а именно все. Правду они считают неправдой, а неправду — правдой.
Алиса немножко поразмышляла о таком положении вещей.
— Выходит, для них дважды два будет пять? — уточнила Алиса.
— Вот именно, дитя мое! Раз дважды два на самом деле вовсе не пять, то выживший из ума, само собой, уверен, что пять.
— И он также считает, что дважды два равно шести?
— Разумеется, — подтвердила Герцогиня, — ведь если это не так, то для выжившего из ума это именно так!
— Но ведь дважды два не может одновременно равняться и пяти, и шести! — воскликнула Алиса в замешательстве.
— Разумеется, не может, — тут же согласилась Герцогиня, — ты это знаешь, я это знаю, а вот выживший из ума не знает. А мораль отсюда такова...
— Хорошо, а как насчет тех, кто в своем уме? — перебила ее Алиса (честно говоря, она была уже по горло сыта всяческими назиданиями). — Я полагаю, в большинстве случаев они правы и лишь иногда заблуждаются?
— Нет, нет и нет! — категорически возразила Герцогиня. — Возможно, там, откуда ты явилась, дела обстоят именно так. В здешних же краях те, кто в своем уме, точны в своих суждениях на все сто процентов! Для них правда — это всегда правда, а неправда — всегда неправда.
Алиса тщательно обдумала сказанное.
— Мне бы очень хотелось знать, — произнесла она наконец, — кто здесь в своем уме, а кто из ума выжил?
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Глава 7 Запоминающаяся глава для запоминания чисел[9]
Глава 7 Запоминающаяся глава для запоминания чисел[9] Наиболее часто мне задают вопрос о моей памяти. Нет, сразу скажу я вам, она у меня не феноменальная. Скорее, я применяю систему мнемотехники, которая может быть изучена любым человеком и описана на следующих страницах.
Глава 1
Глава 1 Кто Джон? Для того чтобы узнать, кого из двух братьев-близнецов зовут Джон, нужно спросить одного из них: «Джон говорит правду?». Если в ответ на этот вопрос последует «да», то независимо от того, лжет ли спрошенный близнец или говорит всегда только правду, он должен
Глава 2
Глава 2 1. История первая. По существу, Болванщик заявил, что варенье украли либо Мартовский Заяц, либо Соня. Если Болванщик солгал, то ни Мартовский Заяц, ни Соня не украли варенье. Но тогда Мартовский Заяц, поскольку он не украл варенье, дал правдивые показания.
Глава 3
Глава 3 14. Гусеница и Ящерка Билль. Гусеница считает, что и она, и Ящерка Билль не в своем уме. Если бы Гусеница была в здравом уме, то мнение о том, что и она, и Ящерка Билль не в своем уме, было бы ложно. Следовательно, Гусеница (будучи в здравом уме) не могла бы придерживаться
Глава 4
Глава 4 26. Сколько кренделей у каждого? Назовем одной порцией все крендельки, которые достались Соне, сколько бы их ни было. Тогда Соне досталась 1 порция. Мартовскому Зайцу досталось вдвое больше крендельков, чем Соне (потому что Соню Болванщик посадил на такое место, где
Глава 5
Глава 5 42. Появление первого шпиона. С заведомо не может быть рыцарем, так как ни один рыцарь не стал бы лгать и утверждать, будто он шпион. Следовательно, С либо лжец, либо шпион. Предположим, что С шпион. Тогда показание А ложно, значит, А шпион (А не может быть шпионом, так
Глава 6
Глава 6 52. Первый вопрос. Алиса ошиблась, записав одиннадцать тысяч одиннадцать сотен и одиннадцать как 11111, что неверно! Число 11111 – это одиннадцать тысяч одна сотня и одиннадцать! Для того чтобы понять, как правильно записать делимое, сложим одиннадцать тысяч,
Глава 7
Глава 7 64. Первый раунд (Красное н черное). Если внезапно заговоривший братец сказал правду, то его звали бы Траляля и в кармане у него была бы черная карта. Но тот, у кого в кармане карта черной масти, не может говорить правду. Следовательно, он лжет. Значит, в кармане у него
Глава 9
Глава 9 Во всех решениях этой главы А означает первого подсудимого, В – второго и С – третьего.78. Кто виновен? Из условий задачи известно, что виновный дал ложные показания. Если бы В был виновен, то он сказал бы правду, когда признал виновным себя. Следовательно, В не может
Глава 11
Глава 11 88. Всего лишь один вопрос. Действительно следуют. Рассмотрим сначала утверждение 1. Предположим, некто убежден, что он бодрствует. В действительности он либо бодрствует, либо не бодрствует. Предположим, что он бодрствует. Тогда его убеждение правильно, но всякий,
Глава 3. Кто не в своем уме?
Глава 3. Кто не в своем уме? — В этой стороне, — Кот помахал в воздухе правой лапой, — живет Шляпник. В этой стороне, — и он помахал в воздухе левой лапой, — Мартовский Заяц. Навести кого хочешь, они оба не в своем уме. — Зачем же вы меня к ним отправляете, если они не в своем
Глава 1
Глава 1 graphics46 Кто Джон?Чтобы узнать, кто из двух братьев Джон, спросите одного из них: «Джон правдив?» Если он ответит «да», это должен быть Джон, независимо от того, солгал он или сказал правду. Если же он ответит «нет», значит, он не Джон. И вот как это подтверждается.Ответив
Глава 2
Глава 2 graphics48 1. История перваяШляпник заявил, по существу, что повидло украл либо Мартовский Заяц, либо Соня. Если Шляпник солгал, значит ни Мартовский Заяц, ни Соня повидла не крали. Раз Мартовский Заяц кражи не совершал, то он, следовательно, сказал на суде правду.
Глава 3
Глава 3 graphics50 14. Гусеница и Ящерка БилльГусеница убеждена в том, что и она, и Ящерка Билль оба не в своем уме. Если бы Гусеница была в своем уме, то ее суждение о том, что оба они из ума выжили, было бы ложным. Раз так, то Гусеница (будучи в своем уме) вряд ли всерьез могла быть
Глава 9
Глава 9 Для всех решений в этой главе назовем первого подсудимого А, второго — Б и третьего — В. graphics56 78. Кто виновен?Нам дано, что солгал тот, кто был виновен. Если бы это был Б, он сказал бы правду, признав свою вину, поэтому Б не может быть виновным. Если бы виновным был А, то