Предисловие

Предисловие

Алгоритм — это способ автоматизации вычислений, который позволяет получить определенный результат на основе исходных данных и посредством выполнения действий в заданном порядке за конечное число этапов. Следовательно, алгоритм позволяет решить не одну конкретную задачу, а целый ряд задач одного класса, то есть задач с похожими условиями, вне зависимости от исходных данных. На бытовом уровне алгоритмом можно считать формулу. Таким образом, алгоритм — это математический инструмент, но само его определение подсказывает, почему алгоритмы стали основой информатики.

Алгоритмы управляют работой окружающих нас электронных устройств, благодаря которым становится возможным существование нашего удивительного цифрового мира. По сути, компьютерная программа — не более чем алгоритм, составленный на языке, понятном компьютеру. Однако царствование алгоритмов в вычислительной технике — лишь краткий эпизод долгой и интересной истории, которая началась тогда, когда зародились вычисления.

Вычисления и технологии связаны между собой с древних времен. Вычислительные инструменты всегда были продуктом технологий и способов счисления, которые использовались в тех или иных культурах в тот или иной период. Древнеегипетские методы вычислений и римские устройства для счета, например абак, подчинялись правилам вычислений, которые были приняты в этих культурах. Это влияние было взаимным: римская система счисления сохранилась вплоть до Средних веков благодаря широкому применению абака. Аналогичным образом использование бумаги способствовало распространению арабских цифр. Венцом этой эволюции являются информатика и компьютеры, которые создавались с одной целью: разработать всё более и более мощные устройства для выполнения всё более и более сложных вычислений.

Число 71 прекрасно иллюстрирует эволюцию вычислений и их взаимосвязь с технологиями. Еще в Месопотамии и Древнем Египте предпринимались попытки вычислить 71 с помощью доступных в то время приспособлений. Были получены удивительные результаты: уже Архимед в III веке до н. э. рассчитал приближенное значение 71 с невероятно малой погрешностью в 0,002. С развитием информатики вычислялись всё новые и новые знаки 71: в настоящее время известно несколько триллионов знаков этого числа. Были созданы алгоритмы, позволяющие вычислить любой отдельный знак числа 71.

В этой книге рассказывается история алгоритмов и вычислений, а также описываются важнейшие особенности вычислений и вычислительной техники, начиная от первых счетных палочек и заканчивая компьютерами, без которых невозможно представить современный мир. Эта удивительная история помогает нам понять, почему мир, в котором мы живем, выглядит именно так.

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг

Предисловие

Из книги Мечты об окончательной теории [Физика в поисках самых фундаментальных законов природы] автора Вайнберг Стивен


Предисловие

Из книги Великая Теорема Ферма автора Сингх Саймон


Предисловие

Из книги Приключения Алисы в Стране Головоломок автора Смаллиан Рэймонд Меррилл

Предисловие Рэймонд Смаллиан владеет поистине уникальной комбинацией талантов и профессиональных умений, являясь философом, логиком, математиком, музыкантом, фокусником, юмористом, писателем и создателем замечательных головоломок в одном лице. Щедро наделенный даром


ПРЕДИСЛОВИЕ

Из книги Логическая игра автора Кэрролл Льюис

ПРЕДИСЛОВИЕ Если вы встретите человека, утверждающего, будто он знает сказки Льюиса Кэрролла «Алиса в Стране Чудес» и «Сквозь зеркало и что там увидела Алиса» (часто называемую для краткости просто «Зазеркалье»), не верьте ему, хотя, вне всякого сомнения, он читал обе


Предисловие

Из книги Одураченные случайностью [Скрытая роль шанса в бизнесе и жизни. Второе издание] автора Талеб Нассим Николас


Предисловие

Из книги Алиса в Стране Смекалки [litres] автора Смаллиан Рэймонд Меррилл

Предисловие Рэймонд Смаллиан воплощает в одном лице единственное в своем роде собрание различных профессий: философ, логик, математик, музыкант, фокусник, юморист, писатель и составитель великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан


Предисловие

Из книги Математика в занимательных рассказах автора Перельман Яков Исидорович

Предисловие В поисках средств для оживления в широких кругах интереса к математике мне пришла мысль собрать ряд произведений, трактующих математические темы в беллетристической или полубеллетристической форме, и предложить их читателю с соответствующими


ПРЕДИСЛОВИЕ

Из книги Хаос и структура автора Лосев Алексей Федорович


ПРЕДИСЛОВИЕ

Из книги Введение в криптографию автора Циммерманн Филипп


Предисловие

Из книги Криптография и свобода автора Масленников Михаил


Предисловие

Из книги Магия чисел [Моментальные вычисления в уме и другие математические фокусы] автора Бенджамин Артур


Предисловие

Из книги Истина в пределе [Анализ бесконечно малых] автора Дуран Антонио

Предисловие Мне нравится размышлять о тех людях, которым первым пришла в голову мысль считать вещи. Наверное, они сразу заметили, что счет на пальцах отлично работает. Может быть, какой-нибудь древний человек по имени Ог (родившийся еще до потопа) или один из его приятелей


Предисловие

Из книги Синхронистичность: акаузальный связующий принцип автора Юнг Карл Густав

Предисловие Анализ бесконечно малых, вне всяких сомнений, наиболее мощное и эффективное средство изучения природы, когда-либо созданное математиками. Эта дисциплина зародилась в древности и развивалась очень долго. С III века до н. э., когда Архимед впервые использовал


Предисловие

Из книги Простые числа [Долгая дорога к бесконечности] автора Грасиан Энрике

Предисловие 816 Написав эту работу, я, если можно так выразиться, выполнил обещание, о котором на протяжении многих лет боялся вспоминать. Сложность проблемы и ее представления казалась мне слишком большой; слишком велика была интеллектуальная ответственность, без


Предисловие

Из книги Математика любви. Закономерности, доказательства и поиск идеального решения автора Фрай Ханна

Предисловие С точки зрения арифметики большинство чисел отличается, так сказать, «хорошим поведением». Четные числа всегда чередуются с нечетными, каждое третье число всегда кратно трем, квадраты чисел подчиняются определенному закону. Поэтому мы можем составить


Предисловие

Из книги автора

Предисловие Хочу начать с признания: я не специалист в вопросах любви. Я никогда не изучала психологию, я лишь в общих чертах знакома с основами биохимии человека, и моя собственная личная жизнь – как и у большинства из нас – представляет собой пеструю смесь