Предисловие
Предисловие
С точки зрения арифметики большинство чисел отличается, так сказать, «хорошим поведением». Четные числа всегда чередуются с нечетными, каждое третье число всегда кратно трем, квадраты чисел подчиняются определенному закону. Поэтому мы можем составить длинный ряд чисел, которые ведут себя так, как им положено, независимо от длины этого ряда и величины самих чисел. Но простые числа похожи на неуправляемую толпу. Они появляются там, где им захочется, без предварительного предупреждения, на первый взгляд, совершенно хаотично, без какой-либо закономерности. А самое главное — их нельзя проигнорировать: простые числа необходимы для арифметики и для математики в целом.
Простые числа — не такая уж сложная тема, на изучение которой потребовалось бы много лет; фактически ее проходят еще в школе. Чтобы понять, что такое простое число, нужно лишь уметь считать и владеть четырьмя основными арифметическими действиями. Тем не менее, простые числа были и продолжают оставаться одной из самых удивительных проблем в истории науки. Тот, кто хочет заниматься математикой, но не владеет теорией простых чисел, ничего не сможет добиться, так как они присутствуют везде — иногда затаившись, как в засаде, готовые появиться когда их меньше всего ожидаешь. С неизбежностью появления простых чисел невозможно не считаться.
Простые числа важны не только в математике. Многие даже не догадываются о том, что они играют важную роль в нашей повседневной жизни, например, в банковских операциях или в обеспечении защиты персональных компьютеров и конфиденциальности разговоров по мобильному телефону. Они являются краеугольным камнем компьютерной безопасности.
В метафорическом смысле простые числа — как вредоносный вирус: если он захватывает ум математика, его очень трудно искоренить. Евклид, Ферма, Эйлер, Гаусс, Риман, Рамануджан и многие другие известные математики стали его жертвой.
Хотя некоторым и удалось более-менее излечиться, все они страдали навязчивой идеей найти «волшебную формулу», которая определяет, какое простое число будет следовать за определенным натуральным числом. Однако никому еще не удалось открыть это правило.
Простые числа на протяжении всей истории математики порождали множество гипотез. В каком-то смысле можно сказать, что история простых чисел является историей неудач, но прекрасных неудач, которые со временем привели к возникновению новых теорий, свежих воззрений и передовых рубежей. В смысле развития математики простые числа являются источником чрезмерного богатства: как это ни парадоксально звучит, даже хорошо, что эта теория до конца не изучена. И все говорит о том, что такая ситуация будет сохраняться в течение долгого времени.
При подготовке этой книги мы старались поддерживать «высокий» уровень разъяснения: объем математических знаний, необходимых для понимания материала, может быть небольшим. Кавычки указывают на то, что эти понятия относительны, тем более для рассматриваемых здесь тем. Во всяком случае, эта книга является кратким путеводителем по миру простых чисел и будет полезна каждому читателю, который знает, что такое числа, и умеет оперировать ими.
С другой стороны, для читателей, имеющих более глубокие знания математики, мы постарались включить информацию о конкретных исторических процессах, необходимых для понимания тонкостей, которые великие математики применяли в решении проблем, связанных с простыми числами.
Как будет ясно из первой главы, понятие простых чисел и задачи, связанные с ними, можно легко объяснить, но решения этих задач в большинстве своем относятся к сложнейшим областям профессиональной математики.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Предисловие
Предисловие С точки зрения арифметики большинство чисел отличается, так сказать, «хорошим поведением». Четные числа всегда чередуются с нечетными, каждое третье число всегда кратно трем, квадраты чисел подчиняются определенному закону. Поэтому мы можем составить
Предисловие
Предисловие 816 Написав эту работу, я, если можно так выразиться, выполнил обещание, о котором на протяжении многих лет боялся вспоминать. Сложность проблемы и ее представления казалась мне слишком большой; слишком велика была интеллектуальная ответственность, без
Предисловие
Предисловие Мне нравится размышлять о тех людях, которым первым пришла в голову мысль считать вещи. Наверное, они сразу заметили, что счет на пальцах отлично работает. Может быть, какой-нибудь древний человек по имени Ог (родившийся еще до потопа) или один из его приятелей
Предисловие
Предисловие Рэймонд Смаллиан воплощает в одном лице единственное в своем роде собрание различных профессий: философ, логик, математик, музыкант, фокусник, юморист, писатель и составитель великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан
Предисловие
Предисловие Рэймонд Смаллиан владеет поистине уникальной комбинацией талантов и профессиональных умений, являясь философом, логиком, математиком, музыкантом, фокусником, юмористом, писателем и создателем замечательных головоломок в одном лице. Щедро наделенный даром
Предисловие
Предисловие В поисках средств для оживления в широких кругах интереса к математике мне пришла мысль собрать ряд произведений, трактующих математические темы в беллетристической или полубеллетристической форме, и предложить их читателю с соответствующими
ПРЕДИСЛОВИЕ
ПРЕДИСЛОВИЕ Если вы встретите человека, утверждающего, будто он знает сказки Льюиса Кэрролла «Алиса в Стране Чудес» и «Сквозь зеркало и что там увидела Алиса» (часто называемую для краткости просто «Зазеркалье»), не верьте ему, хотя, вне всякого сомнения, он читал обе
Предисловие
Предисловие Хочу начать с признания: я не специалист в вопросах любви. Я никогда не изучала психологию, я лишь в общих чертах знакома с основами биохимии человека, и моя собственная личная жизнь – как и у большинства из нас – представляет собой пеструю смесь
Предисловие
Предисловие Анализ бесконечно малых, вне всяких сомнений, наиболее мощное и эффективное средство изучения природы, когда-либо созданное математиками. Эта дисциплина зародилась в древности и развивалась очень долго. С III века до н. э., когда Архимед впервые использовал