Предисловие
Предисловие
Анализ бесконечно малых, вне всяких сомнений, наиболее мощное и эффективное средство изучения природы, когда-либо созданное математиками. Эта дисциплина зародилась в древности и развивалась очень долго. С III века до н. э., когда Архимед впервые использовал бесконечно малые величины для вычисления площади, до эпохи Ньютона и Лейбница, которые придали окончательный вид анализу бесконечно малых, прошло почти две тысячи лет. Но лишь спустя еще полтора столетия Коши и Вейерштрасс «приручили» бесконечно малые величины, найдя им адекватное логическое объяснение.
Если оставить мистические свойства бесконечности в стороне, то анализ бесконечно малых в том виде, в каком он существует сегодня, образован двумя внешне различными направлениями: дифференциальным исчислением, в основе которого лежит понятие производной, и интегральным исчислением. Их объединяет основная теорема анализа, согласно которой дифференцирование и интегрирование являются взаимно обратными операциями.
Анализ бесконечно малых находит очень широкое применение ввиду того, что производные и интегралы используются во множестве областей математики, физики, техники, экономики и других наук.
К примеру, производная — это фундаментальное понятие физики, так как ему соответствуют такие понятия, как мгновенная скорость и мгновенное ускорение, а следовательно, и понятие силы. Неудивительно, что большинство физических законов выражены в виде дифференциальных уравнений, где производные используются наравне с обычными функциями. Приведем еще один из множества примеров, показывающих, насколько разными способами может применяться анализ бесконечно малых. Кому из нас, привыкших к современному медицинскому оборудованию, не делали магнитно-резонансную томографию (МРТ)? Когда волна проходит сквозь наше тело, ее поведение можно описать интегралом, значение которого равно разности интенсивности волны на входе и выходе из нашего организма. Аппарат «угадывает», что находится внутри нашего тела, на основании значений всех этих интегралов.
Современная физика родилась во времена Ньютона, который, помимо прочего, был создателем анализа бесконечно малых. Это совпадение не случайно: по словам самого Ньютона, идеи, которые окончательно оформились с открытием его метода исчисления, родились одновременно с первыми представлениями о гравитации. Первая, рудиментарная версия анализа бесконечно малых должна была помочь Ньютону на основе законов Кеплера о движении планет вывести закон гравитации, согласно которому сила притяжения тел обратно пропорциональна квадрату расстояния между ними.
Нечто подобное произошло, когда новая версия анализа бесконечно малых была создана усилиями Лейбница. Вскоре после того как в 1684 и 1686 году были опубликованы две его статьи, в которых излагались основы нового исчисления, оно было успешно применено для решения множества разнообразных задач механики, которые до этого не могли решить даже гениальные Леонардо да Винчи и Галилей. Речь идет о задаче о цепной линии, задаче о брахистохроне и некоторых других.
Об анализе бесконечно малых и его удивительной истории и пойдет речь в этой книге.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Предисловие
Предисловие С точки зрения арифметики большинство чисел отличается, так сказать, «хорошим поведением». Четные числа всегда чередуются с нечетными, каждое третье число всегда кратно трем, квадраты чисел подчиняются определенному закону. Поэтому мы можем составить
Предисловие
Предисловие 816 Написав эту работу, я, если можно так выразиться, выполнил обещание, о котором на протяжении многих лет боялся вспоминать. Сложность проблемы и ее представления казалась мне слишком большой; слишком велика была интеллектуальная ответственность, без
Предисловие
Предисловие Мне нравится размышлять о тех людях, которым первым пришла в голову мысль считать вещи. Наверное, они сразу заметили, что счет на пальцах отлично работает. Может быть, какой-нибудь древний человек по имени Ог (родившийся еще до потопа) или один из его приятелей
Предисловие
Предисловие Рэймонд Смаллиан воплощает в одном лице единственное в своем роде собрание различных профессий: философ, логик, математик, музыкант, фокусник, юморист, писатель и составитель великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан
Предисловие
Предисловие Рэймонд Смаллиан владеет поистине уникальной комбинацией талантов и профессиональных умений, являясь философом, логиком, математиком, музыкантом, фокусником, юмористом, писателем и создателем замечательных головоломок в одном лице. Щедро наделенный даром
Предисловие
Предисловие В поисках средств для оживления в широких кругах интереса к математике мне пришла мысль собрать ряд произведений, трактующих математические темы в беллетристической или полубеллетристической форме, и предложить их читателю с соответствующими
ПРЕДИСЛОВИЕ
ПРЕДИСЛОВИЕ Если вы встретите человека, утверждающего, будто он знает сказки Льюиса Кэрролла «Алиса в Стране Чудес» и «Сквозь зеркало и что там увидела Алиса» (часто называемую для краткости просто «Зазеркалье»), не верьте ему, хотя, вне всякого сомнения, он читал обе
Предисловие
Предисловие Хочу начать с признания: я не специалист в вопросах любви. Я никогда не изучала психологию, я лишь в общих чертах знакома с основами биохимии человека, и моя собственная личная жизнь – как и у большинства из нас – представляет собой пеструю смесь
Предисловие
Предисловие Анализ бесконечно малых, вне всяких сомнений, наиболее мощное и эффективное средство изучения природы, когда-либо созданное математиками. Эта дисциплина зародилась в древности и развивалась очень долго. С III века до н. э., когда Архимед впервые использовал