Эйлер и анализ бесконечно малых
Эйлер и анализ бесконечно малых
Если Ньютон и Лейбниц считаются создателями дифференциального и интегрального исчисления, то Эйлера можно назвать создателем математического анализа — области математики, куда входят оба эти раздела. В этом смысле его книги «Введение в анализ бесконечно малых» (1748), «Наставление по дифференциальному исчислению» (1755) и «Интегральное исчисление» (1768—1770) сыграли ключевую роль в оформлении структуры этой новой дисциплины.
Трактат «Введение в анализ бесконечно малых» стал для математического анализа тем же, что «Начала» Евклида для геометрии. В этом трактате Эйлер указывает, что функция является основным предметом изучения в анализе, систематизирует работы предшественников об элементарных функциях, изучает их, не прибегая к дифференциальному или интегральному исчислению, однако обильно использует бесконечно большие и бесконечно малые величины (см. приложение). Он также всеми возможными способами старается избежать геометрических рассуждений и чертежей, отдавая предпочтение аналитике и формулам. Структуру дифференциального исчисления он изложил во второй книге трилогии.
Хотя Эйлер был последователем Лейбница, в «Наставлении по дифференциальному исчислению» он понимает дифференциал как разницу, однако вносит изменения в исчисление Лейбница. С учетом поправок Эйлера понятие дифференциала приближается к понятию ньютоновской «исчезающей величины».
Извечные сомнения, касающиеся бесконечно малых, Эйлер развеял так. По его мнению, важнее было не то, что такое бесконечно малые величины, а то, как они себя ведут. В этом смысле для Эйлера бесконечно малые были равны нулю или в итоге приравнивались к нулю; важнее то, что эти величины могут делиться друг на друга. Результат подобного деления, по сути эквивалентного 0/0, может равняться четко определенному конечному числу. Так, дифференциалы dx, dy играют главную роль при определении значения дроби dy/dx.. Исчисление описывает, как вычислить эту дробь, когда приращения «исчезают». В «Наставлении по дифференциальному исчислению» Эйлер описывает «метод определения пропорции исчезающих приращений, которые получают функции, когда аргументы функции получают одно из таких приращений». Иными словами, в анализе Эйлера вводится отношение приращений

определяющее производную функции — понятие, которое заменило дифференциалы dx, dy, занимающие почетное место в исчислении Лейбница. Внесенные Эйлером изменения приблизили понятия дифференциального исчисления Лейбница к понятию предела, которое впоследствии использовал Коши.
В последнем труде трилогии Эйлера, «Интегральное исчисление», интегрирование описывается как операция, обратная дифференцированию. Интегрирование по-прежнему соответствовало понятию площади, но потеряло независимый характер, который отстаивал Лейбниц, что помогло Коши при введении понятия определенного интеграла.
ЭЙЛЕР ВЕЛИКИЙ
Эйлер был одним из величайших математиков всех времен и, вне всяких сомнений, лучшим математиком XVIII века. Он родился в 1707 году в Базеле, окончил местный университет, брал частные уроки у Иоганна Бернулли, одного из учеников Лейбница.
В 1727 году он переехал в Санкт-Петербург, был членом Петербургской академии наук с 1731 по 1741 год, затем переехал в Пруссию и был избран членом Берлинской академии наук. Несмотря на непростые отношения с прусским королем Фридрихом II, он прожил в Берлине 25 лет, после чего вернулся в Санкт-Петербург, где умер в 1783 году.

Портрет Леонарда Эйлера кисти Иоганна Георга Брюкнера.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Глава 3 Анализ
Глава 3 Анализ А что такое эти флюксии? Скорости исчезающих приращений. А что такое эти самые исчезающие приращения? Они не есть ни конечные величины, ни величины бесконечно малые, но они и не нули. Разве мы не имеем права назвать их призраками исчезнувших величин? Епископ
Глава 5. Анализ данных
Глава 5. Анализ данных Руководство крупной американской сети супермаркетов Osco несколько лет назад поставило перед службой информационных технологий задачу разработать систему, способную анализировать огромные объемы данных, генерируемых ежедневно.Предполагалось,
Анализ периодичности кометы Галлея. Список дат её появления
Анализ периодичности кометы Галлея. Список дат её появления Начнем со списка дат, обычно считающихся датами появления кометы Галлея. Список разбивается обычно на две части: китайские записи о комете Галлея и европейские. Приведем оба списка в сравнении друг с
Глава 1. Что такое анализ бесконечно малых и для чего он нужен
Глава 1. Что такое анализ бесконечно малых и для чего он нужен Анализ бесконечно малых — это область математики, которая имеет огромное значение для науки и техники. Чтобы понять, из чего состоит эта сложная и тонкая дисциплина, наверное, следует начать с рассказа о
Ньютон и анализ бесконечно малых
Ньютон и анализ бесконечно малых Исаак Ньютон — один из самых известных и уважаемых ученых всех времен. Хотя это часто не принимается во внимание, но он в наибольшей степени обязан этой славе своим способностям к математике. Именно благодаря им он заметно выделялся среди
Лейбниц и анализ бесконечно малых
Лейбниц и анализ бесконечно малых «Почти все остальные крупные математики, — писал в XX веке Иозеф Хоффман, видный исследователь биографии Лейбница, — увлекались математикой уже в юные годы и разрабатывали радикально новые идеи. Однако этот период в жизни Лейбница не был
Эйлер, Коши и эстетическая ценность математики
Эйлер, Коши и эстетическая ценность математики Следует рассказать и об эстетическом начале, поскольку, вопреки мнению многих, эстетика не только не чужда математике, но и составляет ее значимую часть.Название этой главы — «Укрощенные бесконечно малые» — указывает, что
Приложение. Эйлер и бесконечно малые
Приложение. Эйлер и бесконечно малые Чтобы показать, как используются бесконечно большие и малые величины, приведем пример разложения функции ez в степенной ряд. Этот пример продемонстрирован Эйлером в книге «Введение в анализ бесконечно малых». Сначала Эйлер определяет