Наука в Европе XVII века
Наука в Европе XVII века
Перед тем как рассказать об открытиях, совершенных в XVII веке, в результате которых появился анализ бесконечно малых, будет уместно описать ситуацию в европейской науке начала XVII века.
Во-первых, нужно уточнить, что математика и наука в целом тогда не были уделом профессионалов, как в наше время. В университетах не проводились научные исследования, а полученные результаты обычно не изучались более подробно — можно сказать, что это было не принято. Почти никто из ученых, о которых мы расскажем на следующих страницах, не был профессиональным математиком: некоторые были юристами, другие — архитекторами, дипломатами, богословами, и лишь очень немногие зарабатывали на жизнь математикой или же были как-то связаны с университетами. Поэтому когда мы называем кого-либо математиком, это означает, что этот ученый внес вклад в развитие математики, но мог иметь совершенно иную сферу профессиональных и научных интересов.
Это привело к ряду неудобств. Исследователи объединялись вокруг одного ученого или любителя науки, подобные группы часто были изолированными друг от друга или враждовали, что было вызвано вопросами патриотизма или спорами о научных состязаниях или турнирах, которые в ту эпоху проводились очень часто. По всем этим причинам полученные результаты распространялись неэффективно: как правило, о них упоминали в письмах друзьям или знакомым, далее, спустя некоторое время (иногда крайне длительное) эти знания оформлялись в виде книг, которые также не становились достоянием широкого круга.
В этих условиях лучшее математическое образование давали не университеты, а отдельные ученые. Одним из ведущих научных обществ первой половины XVII века была Accademia Nazionale dei Lincei (Национальная академия деи Линчей), в которой состоял Галилей. Академия была основана в Риме в 1603 году и прекратила свое существование спустя 30 лет. Центром, возможно, важнейшего научного общества был монах францисканского ордена минимов Марен Мерсенн (1588—1648). Мерсенн, который жил в Париже начиная с 1610-х годов, создал кружок математиков и ученых, встречи которого проводились еженедельно. Мерсенн помогал многим европейским ученым и философам поддерживать переписку с Дезаргом, Ферма и Паскалем (последний начал посещать встречи кружка в конце 1630-х, будучи еще подростком). Кружок также способствовал распространению философских трудов Декарта и астрономических трактатов Галилея. Помимо организаторской работы, Мерсенн также внес вклад в математику и акустику.
В начале XVII века было восстановлено практически все математическое и научное наследие Древней Греции, сохранившееся после бурных времен Средневековья. Хотя «Начала» Евклида и другие базовые труды были хорошо известны и изучены, более глубокие и сложные трактаты, в частности книги Архимеда, были поняты лишь несколько десятилетий спустя. Их освоение сыграло решающую роль в создании анализа бесконечно малых. Некоторые из отцов-основателей исчисления, в частности Валлис и Барроу, имели в личной библиотеке экземпляры трудов Архимеда. Достаточно сказать, что Архимед был наиболее цитируемым автором во всех книгах о вычислении площадей и объемов, написанных в течение всего этого столетия.
Однако один из аспектов математики Архимеда и древнегреческой математики вообще радикально изменился. Речь идет о логической строгости изложения. Математика XVII века была намного менее строгой и четкой, чем древнегреческая. Может показаться, что это был шаг назад, однако именно эта смена парадигмы в итоге позволила преодолеть границы, обозначенные в древнегреческой математике, и, в частности, создать математический анализ. В отличие от ученых Древней Греции, математиков XVII века интересовали открытия, а не безупречно строгие доказательства.
Чем была вызвана эта смена парадигмы? Этому можно привести различные объяснения, в том числе и философские: ученые XVII века не находились под влиянием философии Платона, которой и была обусловлена строгость логического изложения, свойственная греческой математике. Причины этому могут носить исторический характер: XVI и XVII века были временем самых разнообразных открытий: географических (открытие Америки в конце XV века стало результатом не точных логических рассуждений, а, напротив, ошибки Колумба при вычислении радиуса Земли), астрономических (гелиоцентрическая теория Коперника), медицинских (кровообращение) и технических (изобретение книгопечатания Гуттенбергом, создание микроскопа и телескопа).
Математики предпочитали уделять основное внимание разработке новых методов, с помощью которых можно было совершать открытия, не заботясь о логической строгости этих методов. В рамках такого подхода бесконечность использовалась без аристотелевских ограничений, и бесконечно малые и бесконечно большие величины стали применяться очень широко. Изначально они применялись для вычисления площадей, объемов, углов наклона касательных, центров тяжести, максимумов, минимумов и так далее. Решением этих задач занималась целая плеяда математиков начала XVII века, так называемые предшественники математического анализа. Позднее бесконечно малые позволили Ньютону и Лейбницу создать две похожие версии анализа бесконечно малых. Наконец, уже в XVIII веке Эйлер, несомненно, великий знаток бесконечного, создал математический анализ, в котором функции изучались с помощью методов анализа бесконечно малых.
Если говорить об обстоятельствах, способствовавших созданию исчисления, следует упомянуть еще об одном крупном направлении в математике XVII века — аналитической геометрии.
БЕСКОНЕЧНОСТЬ КАК НЕЧТО БОЖЕСТВЕННОЕ
Существует еще одна причина, которую можно назвать теологической, благодаря которой в XVII веке бесконечность стала использоваться более свободно, чем в Древней Греции. Это связано с восприятием бесконечности как атрибута всемогущего христианского Бога. Следуя заветам Аристотеля, богословы отказывали человеку в возможности понять актуальную бесконечность, но им не оставалось другого выбора, кроме как перевести это понятие в область богословия. Так, Фома Аквинский рассматривал Бога как полную и всеобъемлющую актуальную бесконечность.
Такая трактовка достаточно часто встречается в трудах философов XVII века. Подтверждение этому мы находим у Декарта: «Мыслю некоего вышнего Бога — вечного, бесконечного, всеведущего, всемогущего, творца всех сущих, помимо него самого, вещей», а также: «Что же до Бога, я считаю его столь бесконечным, что к его совершенству ничего уже нельзя добавить»; у Спинозы: «Под Богом я разумею существо абсолютно бесконечное (ens absolute infinitum), то есть субстанцию, состоящую из бесконечно многих атрибутов, из которых каждый выражает вечную и бесконечную сущность», а также у Лейбница: «Следует считать, что эта божественная субстанция, неделимая, универсальная и непреложная, не должна иметь пределов и содержать всю реальность, какую только возможно».
Некоторые из этих философов также были учеными и математиками. Лейбниц, например, был одним из создателей математического анализа. Ньютон, еще один из отцов-основателей анализа, также был богословом и верил во всемогущего Бога.
Аналитическая геометрия позволила сопоставить кривым уравнения. Например, окружности единичного радиуса, то есть кривой, все точки которой отстоят на одну единицу от фиксированной точки, называемой центром, соответствует уравнение x2 + y2 = 1. Также стало возможным сопоставить уравнениям кривые, в результате чего математики смогли изучить намного больше кривых. Теперь, чтобы задать новую кривую, вместо определения ее геометрических свойств требовалось лишь написать соответствующее уравнение. Кроме того, стало возможным применение алгебраических методов для решения геометрических задач, в частности задач на вычисление площадей, определение углов наклона касательных и так далее.
На смену частным геометрическим методам пришли более общие — алгебраические. Например, расчет угла наклона касательной для разных кривых радикально отличался, а методы алгебры, в частности нахождение производной, позволяли определять угол наклона касательной одним и тем же способом для всех кривых. Для этого достаточно было использовать алгоритм, созданный на основе правил вычисления производной.
Следует осознать всю важность открытия этих общих правил, скрытых за неимоверным числом частных результатов, которые были накоплены за первые три четверти XVII века, Именно общие правила аналитической геометрии позволили Ньютону и Лейбницу стать первооткрывателями математического анализа.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
В.Г. Сурдин Образование и наука России: уничтожающий формализм реформ и спекуляции на инновациях 1. Проблема квалифицированных кадров в России
В.Г. Сурдин Образование и наука России: уничтожающий формализм реформ и спекуляции на инновациях 1. Проблема квалифицированных кадров в России Инновации невозможны без квалифицированных кадров, без хорошо подготовленных инженерно-технических работников. Как теперь
Другие летописи, описывающие период до XIII века
Другие летописи, описывающие период до XIII века Кроме Радзивилловского списка сегодня мы располагаем еще несколькими списками древних русских летописей. Основными из них считаются:Лаврентьевская летопись,Ипатьевская летопись,Московская академическая летопись
Амазонки на Руси в XVII веке. Чадра на лице Русских женщин
Амазонки на Руси в XVII веке. Чадра на лице Русских женщин Многие думают, амазонки — это что-то, известное нам только по древнегреческим мифам. Между тем об амазонках как о реально существующих людях рассказывает, например, «Повесть временных лет». На первый взгляд может
Русь = Орда в первой половине XV века. Время усобиц
Русь = Орда в первой половине XV века. Время усобиц Эпоха от Дмитрия Донского до Ивана III очень слабо освещена источниками. Это — время усобиц, когда потомки Ивана Калиты (= Ярослава = Батыя) боролись между собой за власть. Это — известная смута середины XV века.Любопытно, что
Великая смута XVI–XVII веков. Конец Русско-Монгольской орды в XVII веке
Великая смута XVI–XVII веков. Конец Русско-Монгольской орды в XVII веке Согласно нашей гипотезе, весь период «Грозного» от 1547 до 1584 года естественным образом делится на четыре разных правления четырех различных царей. Затем все они были объединены под одним именем «Грозный».
Глава 9 Смутное время русской истории (Начало XVII века)
Глава 9 Смутное время русской истории (Начало XVII века) От смерти «Грозного» (= Симеона-Ивана) до Смуты Согласно романовской версии, «Грозный» умер в 1584 году. Согласно нашей гипотезе, это был престарелый хан Симеон (царское имя — Иван). В конце его правления большой вес в
Двуязычие на Руси XV века
Двуязычие на Руси XV века Вообще «Хождение за три моря» Афанасия Никитина поднимает много интересных вопросов.В основном он пишет по-русски. Но время от времени использует тюркский. Причем переходы с одного языка на другой выглядят абсолютно гладко — в середине
Что же происходило на территории современного Китая ранее XVI века н. э
Что же происходило на территории современного Китая ранее XVI века н. э Сегодня, по-видимому, на этот вопрос ответить уже не удастся, по крайней мере, на основании письменных источников. Сохранившиеся до нашего времени китайские летописи рассказывают нам о событиях на
Эпоха ранее одиннадцатого века
Эпоха ранее одиннадцатого века О событиях ранее XI века н. э. до нас не дошло никаких сведений в письменных источниках. Это, по-видимому, связано с тем, что в то время еще не было письменности. Письменность возникла лишь в X–XI веках н. э. Историческое время ранее XI века надо
Шестнадцатый — начало семнадцатого века Реформация в западной Европе Великая смута на Руси
Шестнадцатый — начало семнадцатого века Реформация в западной Европе Великая смута на Руси Казанский = Хазарский мятеж в Руси-ОрдеВ середине XVI века Казанское царство, оно же — Хазарский каганат — становится центром иудейской религии. Казанский царь, то есть хазарский
5. Наука свиданий
5. Наука свиданий Теперь, когда вы прочитали главу 4, давайте предположим, что ваша фотография – одна из лучших на сайте, и вы имеете оглушительный успех в интернете. Как же конвертировать виртуальный успех в успех в реальной жизни? Существуют ли математические
Глава 2. От Архимеда до XVII века: истоки
Глава 2. От Архимеда до XVII века: истоки В течение всего процесса формирования анализа бесконечно малых, длившегося почти две тысячи лет, со времен Архимеда до эпохи Ньютона и Лейбница, было создано множество различных математических теорий и концепций. Было вновь открыто
От Архимеда до XVII века
От Архимеда до XVII века Лишь в XVII веке математики овладели приемами, описанными в трудах Архимеда, что ускорило появление анализа бесконечно малых. Следует упомянуть, что до того ученые Средневековья и эпохи Возрождения совершили несколько открытий, без которых было бы