Ньютон, Лейбниц и бесконечно малые

We use cookies. Read the Privacy and Cookie Policy

Ньютон, Лейбниц и бесконечно малые

Даже создатели математического анализа не приводили исчерпывающих доказательств открытых ими методов. И Ньютон, и Лейбниц осознавали недостаток логики в своих работах и пытались каждый по-своему если не устранить, то хотя бы смягчить этот недостаток.

Так, Ньютон попытался избежать использования бесконечно малых путем перехода к пределу, однако потерпел неудачу. Тем не менее его усилия стали источником вдохновения для Коши. Покажем, как следует понимать дробь 0/0, получаемую при h = 0 в выражении

необходимом для определения производной f(x) функции f в точке х. Здесь мы позволим себе небольшой анахронизм. Сам Ньютон никогда не использовал понятие производной функции, равно как и не использовал подобные обозначения, а вместо этого употреблял понятие «исчезающая величина». Таким образом, разность f(x + h) — f(x) и само число h будут исчезающими величинами: обе они «исчезают», когда h становится равным нулю. «Последним отношением исчезающих величин» он называл значение вышеуказанной дроби при h = 0. Очевидно, что Ньютон имеет в виду переход к пределу, когда говорит о «последнем отношении исчезающих величин», чтобы обосновать неопределенность 0/0, к которой сводится вышеприведенная дробь при h = 0. Однако он так и не дал этому методу строгого определения. Сам Ньютон осознавал этот недостаток и в объяснении прибегал к физическим аналогиям: «Вероятно, вы можете возразить, что последнего отношения исчезающих величин не существует, поскольку до того как величины исчезают, отношение не является последним, а когда величины исчезают, никакого отношения не существует. Однако, следуя этой же логике, можно отрицать, что тело, которое прибыло в определенную точку и остановилось в ней, не имеет последней скорости, поскольку до этого его скорость не была последней, а после того как тело прибыло в эту точку, его скорость равна нулю. Однако ответ на этот вопрос крайне прост. Под последней скоростью понимается скорость, с которой движется тело в самый момент прибытия, не раньше и не позже, то есть скорость, с которой тело прибыло в последнюю точку и с которой его движение прекратилось. Этим же образом под последним отношением следует понимать отношение величин не до того, как они исчезнут, и не после того, как они исчезнут, а отношение, при котором они исчезнут».

Бесконечно малые величины играли в математическом анализе Лейбница заметно большую роль. Например, они фигурировали в самом определении кривой, которым пользовался Лейбниц. Для Ньютона кривая была образована точкой в движении: «Полагаю математические величины не состоящими из очень малых частей, а описываемыми непрерывным движением. Кривые, таким образом, описываются и создаются не расположением частей, а непрерывным движением точек». Лейбниц же считал, что кривые состоят из отрезков прямой бесконечно малой длины: «Чтобы найти касательную, надо провести прямую, соединяющую две точки кривой, расположенных на бесконечно малом расстоянии, или продленную сторону многоугольника с бесконечным числом углов, который для нас равносилен кривой», — писал Лейбниц в 1684 году.

Понятие кривой еще более четко описывается в книге «Анализ бесконечно малых» маркиза Лопиталя (1696). Второй постулат книги звучит так: «Будем предполагать, что кривую линию можно считать состоящей из бесконечного числа бесконечно малых линий, или, что аналогично, многоугольником с бесконечным числом сторон, каждая из которых имеет бесконечно малую длину, а кривизна линии определяется углами между этими сторонами».

«Анализ бесконечно малых» маркиза Лопиталя, первая книга по анализу бесконечно малых Лейбница. 

Лейбниц объяснял использование бесконечно малых подобно своим предшественникам: «Выбираются столь большие или столь малые величины, чтобы ошибка была меньше данной, так что различия с методом Архимеда заключаются лишь в способе записи, но наш метод более соответствует духу изобретательства». Лейбниц попал в самую точку: в то время ученых больше интересовали открытия, а не доказательства.

ЭДМУНД ГАЛЛЕЙ, НЕВЕРУЮЩИЙ

Книга Беркли «Аналитик» имела подзаголовок: «Трактат, адресованный неверующему математику». Этим «неверующим математиком», скорее всего, был астроном Эдмунд Галлей, который всегда славился атеистическими взглядами и как-то заставил больного отказаться от посещения епископа Беркли, убедив его в непрочности доктрин христианства. В своей книге Беркли хотел показать, что рассуждения анализа бесконечно малых столь же непрочны, как и религиозные догмы. Второй подзаголовок книги звучит так; …где исследуется, является ли предмет, принципы и заключения более отчетливо познаваемыми и с очевидностью выводимыми, чем религиозные таинства и положения веры». Он добавлял: «Извлеки бревно из глаза своего, и сможешь извлечь соринку из глаза брата твоего».

В своей книге Беркли также приводит ряд вопросов, над которыми полагается размышлять. Процитируем некоторые из них: «Вопрос 62. Разве непостижимые тайны не могут с большим правом допускаться в божественной вере, чем в человеческой науке? Вопрос 63. Разве те математики, которые резко выступают против непостижимых тайн, когда-либо критически исследовали собственные принципы?»