Решения задач 51-60
Решения задач 51-60
51. Нужно разрезать флаг по ступенчатой линии, обозначенной на рис. 57а.
Теперь остается только передвинуть нижнюю часть флага вверх на одну ступеньку и сшить. Получается флаг уже не с 12 полосами, а с 10, рис. 57б. Он стал более продолговатым, но ни одного клочка материи не пропало.

Рис. 57 а, б. Как разрезать и перекроить пиратский флаг.
52. Сестра разрезала квадратный кусок материи на 4 части так, как показано на рис. 58а. Пунктиром обозначены линии разреза от вершин квадрата к середине его сторон.

Рис. 58 а, б. Как раскроить квадрат, чтобы из него можно было сшить крест.
Из этих четырех кусков сестра сшила крест (рис. 58 б). Как видите, в нем всего два шва.
53. Вот как сестра сшила крест из обрезков:

Рис. 59. Как сшить крест из обрезков.
54. Способ, каким сестра вырезала малый крест из большого и составила еще один крест из обрезков, показан на рис. 60.

Рис. 60. Как выкроить два малых креста из одного большого.
55. Сделать надо так, как показано на рис. 61. Получаются 6 частей, которые для наглядности пронумерованы.

Рис. 61. Как разделить полумесяц (лунный серп).
56. Решение видно из прилагаемого рис. 62. Обе части разделенной «запятой» равны между собой, потому что составлены из одинаковых частей.

Рис. 62. Как разделить «запятую» на две равные (по площади) части.
Рис. 63 показывает, как составить круг из двух «запятых» — белой и черной.

Рис. 63. Как составить круг из двух «запятых» — белой и черной.
57. Вот все различные развертки куба. Их 12:

Рис. 64. Развертки куба.
58. Решение первой задачи видно из рис. 65.

Рис. 65. Квадрат, составленный из четырех треугольников и одного малого квадрата.
А вот как составляется квадрат из 5 треугольников (рис. 66). Один треугольник предварительно разрезают, как показано на рис. 66 б.

Рис. 66 а, б. Квадрат, составленный из пяти треугольников.
59. Способ раздела земли между четырьмя арендаторами обозначен сплошными линиями на рис. 67.

Рис. 67. Раздел земли и колодцев.
Участки получаются довольно причудливой формы, но зато у всех четырех арендаторов они совершенно одинаковы, и у каждого есть колодец.
60. Секрет непонятного исчезновения 64-го квадратика открывается сразу, стоит только тщательнее исполнить рисунок.

Рис. 68. Тайна исчезнувшего квадратика.
Вглядитесь пристально в приложенный здесь чертеж — вы заметите, что прямоугольник вовсе не составлен из 64 квадратов, как кажется при неотчетливо исполненном чертеже. Те «квадраты», которые расположены вдоль косой линии разреза, совсем не квадраты: каждая из этих фигур по площади немного больше соответствующего квадратика, из суммы этих избытков и слагается недостающая площадь будто бы исчезнувшего квадратика.
Подтасовка выступит яснее, если разграфить фигуру не на 64 квадратика, а всего на 4 х 4 = 16 квадратиков. Наоборот, чем на большее число частей разграфлена фигура, тем труднее уловить ошибку.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Решения задач 101-110
Решения задач 101-110 101. Расчет был сделан совершенно верно, если не считать маленькой арифметической ошибки. Не надо забывать, что лилипуты представляли собой точное, хотя и уменьшенное подобие обыкновенных людей, а значит, имели нормальную пропорцию частей тела.
Решения задач 111-120
Решения задач 111-120 111. Решение этой задачи из рис. 114. Рис. 114.112 —115. Решение задачи 112 показано на рис. 115. задачи 113 на рис. 116 и 117, задачи 114 — на рис. 118, задачи 115 — на рис. 119. Рис. 115. Рис. 116. Рис. 117. Рис. 118. Рис. 119.116. Смотри на рис. 120. Рис. 120.117. Решение задачи 117 показано на
Решения задач 121-130
Решения задач 121-130 121. Обычно отвечают, что бревно вдвое более толстое, но вдвое более короткое, не должно изменить своего веса. Однако это неверно. От увеличения поперечника вдвое объем круглого бревна увеличивается вчетверо; от укорочения же вдвое объем уменьшается
Решения задач 131-140
Решения задач 131-140 131. Расширить площадь пруда вдвое, сохранив его квадратную форму и не тронув дубов, вполне возможно. На рис. 140 показано, как это сделать: надо копать так, чтобы дубы оказались против середины сторон нового квадрата. Легко убедиться, что по площади новый
Решения задач 141-150
Решения задач 141-150 141. Начнем наблюдать за движением стрелок в XII часов. В этот момент одна стрелка покрывает другую. Так как часовая стрелка движется в 12 раз медленнее минутной (она описывает полный круг за 12 ч, а минутная за 1 ч), то в течение ближайшего часа стрелки,
Решения задач 151-160
Решения задач 151-160 151. Ряд горошин будет гораздо длинее стола. Диаметр горошины варьируется от 1/2 до 1/3 см. Если остановиться на первом размере, то в кубике с ребром в 1 см должно умещаться не менее 2 ? 2 ? 2 = 8 горошин [14]. Следовательно, в стакане емкостью 200 см3 число горошин
Решения задач 161-170
Решения задач 161-170 Из фигур, представленных на рис. 167–176, безусловно, можно начертить непрерывной линией фигуры с рис. 168, 170, 171, 172–176. В этих фигурах во всех точках пересечения сходится четное число линий, следовательно, каждая точка может быть начальной, она же будет и
Решения задач 171—180
Решения задач 171—180 171. Даже если бы Земля была совершенно плоской, линия горизонта была бы окружностью!Действительно, что такое горизонт? Воображаемая линия, по которой небесный свод пересекается с Землей. Но небесный свод имеет форму шаровой поверхности. По какой же
Решения задач 181-190
Решения задач 181-190 181. Оба насчитали одинаковое число прохожих. Действительно, тот, кто стоял у ворот, считал следовавших в обе стороны, зато тому, кто ходил, навстречу попалось вдвое больше людей.182. Если сын теперь втрое моложе отца, то отец старше его на удвоенный возраст.
Решения задач 1-10
Решения задач 1-10 1. Первый покупатель купил 15-ведерную и 18-ведерную бочки. Второй – 16-ведерную, 19-ведерную и 31-ведерную.В самом деле:15 + 18 = 33,16 + 19 + 31 = 66,т. е. второй покупатель приобрел вдвое больше керосина, чем первый.Осталась непроданной 20-ведерная бочка. Это единственный
Решения задач 1-10
Решения задач 1-10 1. Различно расположенных прямоугольников в этой фигуре можно насчитать 225.2. Если речь идет о градусах температуры, то, конечно, градус Реомюра всегда больше градуса Цельсия – именно на 1/5 долю; поэтому, если в вашей комнате по Реомюру 16 градусов, то по
Решения задач 1-10
Решения задач 1-10 1. На вопрос часового: «Зачем идешь?» – крестьянин дал такой ответ:– Иду, чтобы быть повешенным на этой виселице.Такой ответ поставил часового в тупик. Что он должен сделать с крестьянином? Повесить? Но, значит, крестьянин сказал правду, за правдивый же
Решения задач 1-10
Решения задач 1-10 1. Сторож рассчитал совершенно правильно: ему действительно причиталось даже более трех тысяч возов яблок, как это ни невероятно.В самом деле. Проследим, как возрастало вознаграждение сторожа с каждым часом.За 1-й час сторож должен был получить яблоко, за
Решения задач 1-10
Решения задач 1-10 1. Место на Земле, откуда во все стороны горизонта простирается юг – это… Северный полюс! И действительно: ведь Северный полюс есть самая северная точка земного шара, и, следовательно, все точки в его окрестности лежат южнее. Когда отважный полярный
Решения задач 1-10
Решения задач 1-10 1. Решение этой задачи на рис. 5. Рис. 52—5. Решение задачи 2 показано на рис. 6, задачи 3 – на рис. 7 и 8, задачи 4 – на рис. 9, задачи 5 – на рис. 10. Рис. 6 Рис. 7 Рис. 8 Рис. 9 Рис. 106. Смотри на рис. 11. Рис. 117. Решение задачи 7 показано на рис. 12. Это равносторонний
Решения задач 1-10
Решения задач 1-10 1. Расширить площадь пруда вдвое, сохранив его квадратную форму и не тронув дубов, вполне возможно. На рис. 7 показано, как это сделать: надо копать так, чтобы дубы оказались против середины сторон нового квадрата. Легко убедиться, что по площади новый пруд