Читайте также
§ 3. Задача Пифагора
Примером ранней теории чисел может служить задача Пифагора. Как мы знаем, в прямоугольном треугольнике длины сторон удовлетворяют соотношению Пифагораz2 = x2 + y2, (1.3.1)где z — длина гипотенузы. Это дает возможность в прямоугольном треугольнике вычислить
ГЛАВА 5
ЗАДАЧА ПИФАГОРА
§ 1. Предварительные замечания
Во введении (§ 3, гл. 1) мы упоминали об одной из древнейших теоретико-числовых задач: найти все прямоугольные треугольники с целочисленными сторонами, т. е. найти все целочисленные решения уравнениях2 + y2 = z2. (5.1.1)Эта
77. задача-шутка
Где за Земле легче всего живется?Эта задача похожа на загадку или на задачу-шутку типа: «Почему птица летает?» (По чему? — По воздуху). Но наш вопрос не совсем такого рода. Если хорошенько подумать, то на него можно дать разумный, вполне обоснованный ответ.
ДЕЛИЙСКАЯ ЗАДАЧА
— Нам известны три неразрешимые задачи древности, — начал Мате, — квадратура круга, трисекция угла и удвоение куба…— Почему же неразрешимые! — с ходу перебил Фило. — Вы же сами только что сказали, что Эратосфен решил одну из них посредством своего
18. НЕРАЗРЕШИМАЯ ЗАДАЧА
Прошла целая неделя, прежде чем мой друг Пункто навестил меня, чтобы обсудить полученные им данные. За это время он успел построить множество больших и малых треугольников и с высокой точностью измерить их углы. Сумма углов у больших треугольников
7. Задача-шутка
Где на Земле легче всего живется?Эта задача похожа на загадку или на задачу-шутку типа: «Почему птица летает?» (По чему? – По воздуху). Но наш вопрос не совсем такого рода. Если хорошенько подумать, то на него можно дать разумный, вполне обоснованный
В. Коронная задача Грифона
– Позвольте теперь мне задать вам задачку, – сказал Грифон. – Это моя коронная задача!– Она очень печальная? – спросил Черепаха Квази.– Ничуть не печальная, – ответил Грифон. – Она хитроумная, вот и все!– А где вы ее взяли? –
38. Еще одна задача про поезд
— Бедолага, — захлебывался рыданиями Как-Бы-Черепа-ха, — только представь себе — будь он хоть чуточку поумней, выехал бы пораньше и успел на поезд!Кстати, мне это напомнило еще об одной задачке, — продолжал он, чуть успокоившись. — Поезд
В. КОРОННАЯ ЗАДАЧА, РАССКАЗАННАЯ ГРИФОНОМ
— А теперь дайте-ка я вам расскажу одну задачку, — заявил Грифон. — Это моя коронная задачка!— А она очень грустная? — спросил Как-Бы-Черепаха.— Ни капельки! — успокоил его Грифон. — Зато очень хитроумная!— А откуда вы ее знаете?
57. Задача о погремушках
— У меня даже голова разболелась от последней задачки, — с утомленным видом произнесла Белая Королева. — Вернемся-ка лучше к старой доброй арифметике. Ты ведь знакома с Траляля и Труляля?— О, я их очень хорошо знаю! — обрадовалась Алиса.— Вот и
Странная задача на премию
Профессор Г. Симон
Лет 20 тому назад в Берлине подвизался искусный счетчик, предлагавший публике такую задачу (переделываем ее на русский лад):«Кто сможет уплатить 5 рублей, 3 рубля или 2 рубля полтинниками, двугривенными и пятаками, всего 20-ю
97. Задача о школьниках
Школьников у нас в стране несколько миллионов. У каждого на голове круглым счетом двести тысяч волос. Как вы думаете, сыщутся ли среди них хотя бы двое, у которых было бы совершенно одинаковое количество
97. Задача о школьниках
Среди школьников наверняка имеются даже не двое, а целые десятки ребят с одинаковым количеством волос. Это следует из того, что число всех школьников больше, чем число волос на голове каждого из них. Школьников с различным числом волос может быть не
Глава 2.
От Архимеда до XVII века: истоки
В течение всего процесса формирования анализа бесконечно малых, длившегося почти две тысячи лет, со времен Архимеда до эпохи Ньютона и Лейбница, было создано множество различных математических теорий и концепций. Было вновь открыто
От Архимеда до XVII века
Лишь в XVII веке математики овладели приемами, описанными в трудах Архимеда, что ускорило появление анализа бесконечно малых. Следует упомянуть, что до того ученые Средневековья и эпохи Возрождения совершили несколько открытий, без которых было бы