ЗАКЛЮЧЕНИЕ

Цель этой книги состояла в том, чтобы создать общую картину подготовки и развития логико-математических (а не технических) аспектов кибернетики. Мы стремились к тому, чтобы читатель ощутил преемственность и направленность развития мысли, давшей последовательность замечательных достижений, которые привели в конце концов к появлению этой новой области знания и технической практики. Вряд ли можно найти другую сферу умственной деятельности, где преемственность была бы столь несомненной и столь непрерывной: даже в «темные» века европейской истории, когда древнеримская цивилизация лежала в руинах, а наследство эллинской культуры было в значительной мере утрачено, в школах не прекращалось преподавание логики; в период же расцвета схоластики, почти «выпавший» для истории науки, логические исследования дали немало интересных результатов. Область знания, которая постоянно меняла свое имя и свой статус, которая рассматривалась то как часть философии, то как отдел языкознания, то как вспомогательный аппарат математики, а на самом деле все время была наукой об «атомах» детерминированного интеллектуального процесса и о законах построения из этих элементов правильных рассуждений, является одной из самых древних наук.

Нам особенно хотелось, чтобы наша книга убедила читателя в том, что современная кибернетика есть детище не только современной техники и даже не столько техники, сколько науки с огромной и славной историей. Нам хотелось склонить читателя к уверенности, что, во-первых, всякое серьезное открытие в области «чистой мысли» обязательно претворяется в физическую, материальную мощь и, во-вторых, не может быть материальной мощи без достаточно прочного фундамента теории, который создается лишь коллективными усилиями многих поколений.

Оглянемся еще раз на факты, с которыми мы познакомились на страницах этой книги, и попробуем немного пофантазировать о завтрашнем дне... не кибернетики, нет — это был бы слишком «технический» вопрос, а науки в целом.

В доисторические, скрытые во мгле тысячелетий, времена люди открыли в своей речи удивительные элементы обладающие все время одной и той же устойчивой формой и сочетающиеся не во всех, а лишь в определенных «разрешенных» комбинациях. Замечательным было то, что «запрет» на комбинации исходил как бы извне: речь, в которой использовались «неправильные» сочетания, оказывалась неправильной и в прямом смысле — в смысле несовпадения с описываемыми вещами и явлениями. Так произошло открытие элементов логики, которые еще раньше проникли в естественный язык стихийным образом, в результате длительной эволюции языка.

Работая сотни тысяч лет как система, отражающая внешний мир, язык запечатлел в себе какие-то постоянные черты действительности. Первые размышления о логике, как и длиннейший ряд последующих исследований, вовсе не были изучением объективно существующей реальности, называемой природой, это было изучение вторичной, но объективной, не зависящей от воли отдельных людей и даже всех людей вместе, системы — отражающей системы.

Древний человек не понимал происхождения логики, но побуждаемый необходимостью, применял ее на деле. Философы элейекой школы, а затем Сократ, Платон и Аристотель сознательно заставили логику «работать». Во-первых, они сильно продвинули теоретический анализ логики, и это дало им в руки достаточно сильный инструмент; во-вторых, они широко использовали логику как средство воздействия на поведение людей; в-третьих, они оказали огромное влияние на образ мышления Эвдокса, Евклида, Архимеда, Аполлония и других великих геометров древнего мира, создавших разнообразные методы математических доказательств, основанные на применении правил логики в геометрии.

Можно сказать, что последнее было н полезно» и вредно для логики: та часть логики, которая «спряталась» в геометрии, как бы перестала быть логикой, приняла псевдоним математики и, слившись с древней наукой о числах — арифметикой, стала развиваться независимо от той части, которая по-прежнему оставалась наукой об элементарных правилах рассуждений. Классическая Логика от этого сильно пострадала, но проникновение вируса логики в клетки математики должно было сыграть свою роль через много столетий.

В средние века логика и математика развивались параллельно. В это же время начали возникать мечты об «искусственном интеллекте». Наиболее чуткие ко всему комплексу наук в целом, наиболее образованные люда эпохи пытались выделить что-то общее для всех видов словесного и формализованного рассуждения и проанализировать его. Постепенно, благодаря математике, стали создаваться все более совершенные знаковые системы, которые позволяли всерьез ставить вопрос о знаковом моделировании логического.

XIX век был веком кульминации классической математики и, как всегда бывает, именно поэтому был веком зарождения нового взгляда на математическое знание, на его роль в человеческом познании и его связь с другими науками, в том числе с логикой.

К началу нашего столетия математическая логика и «языковая» логика настолько близко подошли друг к другу, что многими учеными стали рассматриваться как два аспекта одной науки. Произошло великое воссоединение разошедшихся когда-то направлений человеческой мысли. Многое теперь было готово для появления кибернетики; однако не было ясного осознания того, что все процедуры рассуждений и вычислений, производимые по четким правилам, формализованные вычислительно-дедуктивные процессы — в определенном смысле (и при определенных ограничениях) эквивалентны и что их изучение разными науками обусловлено лишь историческими и методологическими причинами.

Поколение математиков и логиков, родившихся уже в XX веке, пользуясь созданным к этому времени мощным аналитическим аппаратом, установило довольно четкие границы понятий «вычислимость» и «выводимость». В век дифференциации наук логика стремительно повела широкий комплекс научных дисциплин к синтезу. Оказалось, что нет принципиальной разницы между арифметикой, логикой и механическим моделированием поведения людей и вещей. Оказалось, что все эти средства потенциально одинаково пригодны для моделирования, то есть адекватного (часто, правда, только с тем, или иным приближением) описания и предсказания любого детерминированного процесса.

Вышедшая в это время на научную сцену семиотика позволила взглянуть на программу формализации математики, провозглашенную Гильбертом, не как на идеалистическую утопию, а как на серьезную программу разработки средств знакового моделирования регулярно осуществляемых процедур дискретного рода. Но как раз к этому моменту технические достижения позволили претворить знаковое моделирование в физическое. Только недавно соединившиеся математика и логика объединились теперь с электроникой и, взаимодействуя с науками о жизни и технике, положили начало кибернетике.

«Бумажная» математика, разумеется, от этого не пострадала; совсем наоборот, она получила теперь в свое распоряжение мощные вспомогательные средства. Громадное же прикладное значение кибернетики, скажем точнее — социальное ее значение — сделало таким же громадным и значение математики, которая теперь органично включила в себя логику. Сейчас мы видим уже контуры «супернауки», в которой наименования «математика», «логика», «теория логического вывода», «теоретическая кибернетика», «программирование», «теория систем», «семиотика» и другие становятся названиями отделов и подотделов.

Однако диалектика развития такова, что именно появление кибернетики поставило серьезнейшие проблемы. Иллюзия Лейбница, будто с появлением «механического интеллекта» все станет просто, рассеялась как дым. Диалектический процесс познания нельзя в целом автоматизировать— истина по своей сути не формальна, а содержательна. И чтобы перекинуть мост между формальной доказуемостью и содержательной истинностью, пришлось разработать специальную науку —логическую семантику.

Лейбниц думал — и многие еще недавно склонны были с ним соглашаться, что все, происходящее в реальном мире и сфере абстракций, в принципе может быть описано на формализованном языке, позволяющем сводить решение любых научных или практических вопросов к вычислениям. Теперь мы понимаем, что это не так. Результаты Гёделя накладывают четкие ограничения в возможности подобного подхода. Кроме того, приходится учитывать то, что сами формализованно-детерминистские предписания могут носить различный характер —они могут иметь вероятностную природу и «уживаться» с принятием решений и актами «свободного» (то есть не предопределенного детерминистским предписанием) выбора.

Возник взгляд — его со всей решительностью высказал «отец кибернетики» Н. Винер, что мы живем в «вероятностной вселенной»*. Здесь своеобразную перефразировку получила другая идея того же Лейбница — идея о множественности «возможных миров».

В настоящее время, во всяком случае, бесспорно, что на многие реальные процессы следует смотреть как на формализуемые, детерминируемые, происходящие по четким, однозначно понимаемым правилам именно «в принципе». Но быть формализованным, детерминированным в принципе — это не то же самое, что быть фактически представленным на языке какой-то формальной системы или быть детерминированным конкретным, доступным для выявления и формулировки алгоритмом. Да и сами формализуемость, детерминистичность, регулярность поведения — словом, формальность и алгоритмичность — могут быть разной «силы». Поэтому часто говорят о формализуемости и детерминируемости различной степени и для исследования более слабых их вариантов используют разнообразный «нелогический» математический аппарат — теорию игр, исследование операций, теорию массового обслуживания, теорию статистических решений, математическую теорию планирования эксперимента — аппарат, так или иначе связанный с теоретико-вероятностными представлениями и методами.

Необходимость учета более слабых форм логической детерминированности вызвала к жизни исследования различного, рода ослаблений понятия алгоритма (вычислимости). Возникли теоретические концепции «недетерминистских» и «расплывчатых» алгоритмов. По своей логической основе эти теории оказались связанными уже не с двузначной логикой —логикой истины и лжи, которая рассматривалась в этой книге, а с логиками многозначными и беско-нечнозначными. В многозначных логиках используются не два, а более значений истинности; в самой «простой» из них истинностных значений оказывается три — истинность, ложность и неопределенность. В бесконечнозначных логиках предполагается счетно-бесконечное (то есть перечислимое числами натурального ряда) или даже контитуальное множество значений истинности. Такие логики, грубо говоря, моделируют свойство человеческих суждений располагаться на «непрерывной» шкале правдоподобия (достоверность, правдоподобие различной степени, абсолютная ложность).

* Винер. Кибернетика и общество. М., 1958 (см. Предисловие «Идея вероятностной Вселенной»).

Отказ от принципа обязательной дихотомии «истинное-ложное» явился важным завоеванием математико-логической мысли XX столетия, отражающим диалектическую при. роду человеческого познания. Логика, продолжая развивать и углублять свой формальный аппарат (который становится все более сложным, мощным и разнообразным), таким образом более решительно, чем ранее, обращается к учету свойств реального мышления. Это проявляется, в частности, в появлении таких ослаблений понятия алгоритма (вычислимости), которые связаны с задачей отображения в логике «человеческого фактора». Одним из таких ослаблений является понятие предписания алгоритмического типа, предполагающее, что «исполнительным устройством» для алгоритмов является человек с присущими ему ограничениями и свойствами. Не останавливаясь на всех этих вопросах более подробно, мы отсылаем читателя к имеющейся на этот счет литератутуре*.

Отметим также еще один существенный момент. Пересмотр «традиционных» представлений о логической детерминированности, связанные с этим расширение понятия алгоритмического процесса и появление «новых логик» обусловлены не только возрастающей ролью «человеческого фактора». Даже те отрасли знания, которые занимаются исключительно — или почти исключительно—«мертвой» природой (и прежде всего физика), сталкиваются ныне с ситуацией, когда говорить об алгоритмическом познании объектов приходится в каком-то новом, не до конца еще ясном смысле. Уяснение назревающего нового представления о логической детерминированности составляет теперь одну из самых привлекательных для пытливого исследователя проблем. Эта проблема порождает множество более частных вопросов.

Что такое язык вообще и каковы особенности научных языков? Как следует понимать отображение реальности в понятийной теории, коль скоро она выражена некоторой знаковой системой? В каком смысле такая теория предсказывает новые явления? Как в логическом плане соотносятся между собой «теоретические» понятия — понятия дедуктивных наук — и понятия «эмпирические», формирующиеся в опытно-экспериментальном познании? Комплекс подобных вопросов оказывает сильное влияние на развитие теории знаковых систем — семиотики и многие аспекты методологии науки.

В задачи данной книги не входит подробный философский анализ представлений о логической дедукции и алгоритмической процедуре как инструментах познания. Поэтому и в данном случае мы ограничимся фактической стороной дела и сравним то представление о научном описании Вселенной, которое господствовало сто — двести лет назад, с современными представлениями.

Открытие И. Ньютоном закона всемирного тяготения и поразительное по своей точности подтверждение этого закона последующими астрономическими наблюдениями привело к концепции, которая получила название «лапласовского детерминизма», поскольку была образно и четко сформулирована французским математиком, астрономом и физиком Пьером Лапласом. Вот его знаменитые слова:

«Мы должны рассматривать существующее состояние Вселенной как следствие предыдущего состояния и как причину последующего. Ум, который в данный момент знал бы все силы, действующие в природе, и относительное положение всех составляющих ее сущностей, если бы он был еще столь обширным, чтобы ввести в расчет все эти данные, охватил бы единой формулой движения крупнейших тел Вселенной и легчайших атомов. Ничего не было бы для него недостоверным, и будущее, как и прошедшее, стояло бы перед его глазами»[*].

В этом рассуждении присутствует не только непререкаемая убежденность в принципиальной жесткой детермировакности явлений природы, но и глубокая уверенность в возможности — правда, тоже принципиальной — такой теории, которая абсолютно точно отражает развитие событий во Вселенной, то есть теории, представляющей собой знаковую модель, изоморфную реальности - такая уверенность звучит в ссылке на «формулу», ибо Лаплас, будучи математиком, подразумевал под последней, конечно, математическое соотношение — соотношение, содержащее в качестве переменных «наблюдаемые» физические параметры: координаты, импульсы, время; подставляя в эту «формулу» любое значение временной переменной, «всеобъемлющий ум» мог бы, считал Лаплас. вычислить значение других переменных, то есть узнать положение и скорость любой частицы материи в соответствующий момент времени.

В лапласовском подходе нельзя не обнаружить сходства с изложенным в гл. II проектом Лейбница. Роль «универсальной характеристики» — языка, на котором, по замыслу последнего, в принципе станет возможной запись всей информации о сущем, Лаплас отводит языку дифференциальных уравнений, а роль формального аппарата, позволяющего оперировать с выражениями этого языка («исчисления умозаключений»)—физическим законам, облеченным в математическую форму. В силу конкретности этого представления о научном языке и аппарате выводимости лапласовская концепция произвела гораздо более сильное впечатление на умы, чем лейбницевская. Она, казалось, открывала ясный путь к алгоритмизированному познанию всех аспектов мира (включая живую материю, которая, как считалось, в конечном счете управляется физико-химическими законами и ничем иным).

В концепции Лапласа оставался, правда, один не совсем ясный пункт. Для окончательного ее утверждения необходимо было принять тезис о том, что физических законов — законов основных, исходных, из «суперпозиции» которых строятся все остальные закономерности действительности, существует не так уж много и что все они имеют сравнительно простое математическое выражение; кроме того, нужно было допустить абсолютную строгость каждого физического закона и то, что фундаментальные законы с полной определенностью могут быть установлены с помощью опыта. Все эти тезисы во времена Лапласа не имели прямых подтверждений, но, вероятно, мало кто из представителей «точного естествознания» сомневался тогда в их справедливости.

Когда начиная с конца XIX века логика была математизирована, математика логизирована, а понятие об алгоритмической процедуре стало приобретать четкий смысл, возник вопрос о заполнении этих пробелов. В числе 23 наиболее актуальных математических проблем, провозглашенных Гильбертом на Втором Международном конгрессе математиков, оказалась следующая, шестая по номеру, проблема: «Математическое изложение аксиом физики». Если бы ее удалось решить, то можно было бы, наконец, сказать, что «алгоритм познания Вселенной» находится в наших руках.

Однако появление квантовой теории подорвало надежды на такой исход. Сформировался взгляд, что действительность состоит как бы из двух слоев, один из которых (функция состояния физической системы, или волновая функция) характеризуется определенностью развития на каждом этапе, но не доступен прямому наблюдению, а второй вмещает в себя наблюдаемые величины (координаты, скорости, энергию и т.д.), но не детерминируется однозначным образом. Эта «двуслойность» физической реальности, открытая новой физикой, означает, что статистичность — неустранимый атрибут мира: строгого алгоритма, описывающего наблюдаемые явления, не может существовать даже в принципе. В ней, этой «двуслойности», тоже одна из причин, заставляющих современных ученых искать «новые логики»: «вероятностную логику», «логику квантовой механики» и т. п.

Но вероятностно-статистический характер физических процессов — не единственный сюрприз, преподнесенный квантовой теорией. В ее рамках возникает небывалая «завязанность» всех процессов и событий физической реальности. Строго говоря, квантовая физика не имеет права говорить о волновых функциях отдельных систем, а может рассматривать лишь «волновую функцию мира». Например, для того, чтобы развить квантовую электродинамику, охватывающую теорию элементарных частиц, необходимо учитывать процессы, происходящие в галактиках. Это в новом свете рисует феномен приблизительной верности — объективной, но вместе с тем относительной истинности — естественнонаучных утверждений о событиях физического мира и еще раз подчеркивает важное место, которое в процессе познания занимают «внелогические» элементы мышления ученых: интуиция, догадка, вдохновение. Какая многогранная картина «неалгоритмичности» бытия и познания возникает в результате всего этого перед нами!

Каково же тогда значение логико-алгоритмических методов, которым посвящена эта книга? Диалектика реального мира и мышления такова, что движущийся, развивающийся, «завязанный», «неалгоритмический» мир мы познаем в значительной мере, используя средства логики и аппарат эффективной вычислимости. И там, где эти средства и аппарат оказываются применимыми, все возрастающую роль играют кибернетические «усилители интеллекта».

Очерченные выше аспекты осмысления мира и науки выходят за рамки данной книги. Впрочем, мы не затронули и многие интересные проблемы, достаточно близкие к рассмотренным в ней вопросам.

В стороне остался не только вероятностно-статистический аспект кибернетики, «неопределенностный» срез отображения действительности в научном познании и специфически-человеческая (относящаяся к психологии) составляющая логических исследований, но и такие тесно связанные с классической математической логикой и хорошо развитые разделы теоретической кибернетики, как теория автоматов или приложения логики в технике. Неосвещенными остались глубокая внутренняя связь конструктивного направления в математике и логике с вычислительно-кибернетическим кругом идей и задач[*], а также параллели между результатами некоторых психологических работ и положениями конструктивной математики[**]. Мы ничего не сказали об отечественной школе кибернетики как комплексного направления научного поиска и новейших решений в сфере техники — школе, которую возглавляет председатель Научного совета по кибернетике Академии наук СССР академик Аксель Иванович Берг, о замечательных кибернетических идеях и исследованиях покойных Алексея Андреевича Ляпунова и Михаила Львовича Цетлина, о разнообразных направлениях кибернетики, в которых работают ныне здравствующие советские ученые. Не коснулись мы и многих философско-методологических вопросов, возникших перед исследователями в результате появления кибернетики. Рассказ об этих вопросах может явиться темой не одной книги.

* * *

Создатели этой книги благодарны всем тем, кто оказал им помощь — критикой и советами — при окончательной отработке ее содержания. Они выражают особую признательность Д.П.Горскому Б. А. Кушнеру и Г. И. Сыркину, чьи рекомендации особенно содействовали улучшению текста.

Оба автора совместно работали над рукописью и несут за книгу солидарную ответственность. Правда, имеется одно исключение: первую часть названия книги — «Жар холодных числ» (из стихотворения А. Блока «Скифы») предложил В. Н. Тростников, а Б. В. Бирюков добавил вторую —«и пафос бесстрастной логики» (уже не из Блока...).

Борис Владимирович БИРЮКОВ, Виктор Николаевич ТРОСТНИКОВ

ЖАР ХОЛОДНЫХ ЧИСЛ И ПАФОС БЕССТРАСТНОЙ ЛОГИКИ

Редактор С. Столпник. Художник Р. Варшамов. Худож. редактор М. Гусева. Техн. редактор А. Красавина. Корректор Н. Мелешкина.

Цена 35 коп.