Реальное пространство

We use cookies. Read the Privacy and Cookie Policy

Существуют ли многомерные пространства? Конечно, ответ зависит от того, что мы подразумеваем под словом «существуют», но большинство людей не склонны вникать в такие тонкости, особенно если им что-то не нравится. Проблема стала очевидной в 1869 г. В знаменитом обращении к Британской ассоциации содействия развитию наук, позже напечатанном под заголовком «Мольба к математикам», Джеймс Джозеф Сильвестр указал, что важнейшим условием развития математики является обобщение. Ученый утверждал, что здесь главное – допустимость, а не прямое подтверждение физического опыта. Он говорил далее, что при наличии определенного навыка можно легко представить себе четыре измерения, а значит, пространство с четырьмя измерениями допустимо.

Это так разъярило ученого-шекспироведа Клемента Инглби, что он вдохновил великого философа Иммануила Канта доказать, будто трехмерность – неотъемлемая и бесспорная характеристика пространства, абсолютно отвергая доводы Сильвестра. Природа реального пространства не является предметом математического спора. В то время подавляющее большинство английских математиков соглашалось с Инглби. Но ряд ученых с континента не были с ним согласны. Грассман утверждал: «Теоремы “Учения о протяженности” не просто служат переводом геометрических результатов на язык абстракции; они обладают гораздо более важным обобщающим значением, ибо в то время, когда обычная геометрия остается узницей трех [физических] измерений, абстрактная наука не имеет никаких пределов».

Сильвестр обозначил свою позицию: «Немало ученых предпочли бы считать обобщенное понятие пространства всего лишь замаскированной формой алгебраической абстракции, но то же можно сказать о нашем представлении бесконечности, или о невозможных линиях, или о линиях, образующих угол, равный 0, в геометрии – понятиях, в пользе и необходимости которых уже никто не сомневается. Доктор Сальмон в своем расширенном изложении теории Мишеля Шаля о характеристиках поверхностей, мистер Клиффорд в вопросах о вероятности и я сам в теории о разбиении числа, а также в моей статье о барицентрической проекции ощущали и получали доказательства практической пользы четырехмерного пространства, как если бы оно было допустимо».

Больше книг — больше знаний!

Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ