Примечание редактора. Время как четвертое измерение
Примечание редактора. Время как четвертое измерение
Полезно остановиться подробнее на высказанном Уэллсом своеобразном понимании времени как четвертого измерения пространства.
Чтобы уяснить себе это, перенесемся мысленно из знакомого нам мира трех измерений в мир двух измерений. Таким двухмерным миром, имеющим длину и ширину, но вовсе не имеющим толщины, является плоскость. Вообразим же себе, что весь пространственный мир сплющился в одну плоскость и что в таком мире обитают разумные существа, — конечно, также двухмерные. Для двухмерных обитателей существуют только двухмерные вещи. Всякая линия, пересекающая их плоский мир, должна представляться им в виде точки, так как они могут из всей линии воспринять только одну точку — именно ту, в которой эта линия встречает плоскость. Двухмерные существа могли бы исследовать всю эту линию только в том случае, если бы их плоский мир двигался в третьем измерении — например, по перпендикулярному направлению. Наделим этот мир таким движением. Следя тогда за тем, как изменяется положение точки встречи линии с их плоскостью, двухмерные мыслители могли бы составить себе некоторое понятие обо всей трехмерной линии. Но, конечно, они не могли бы так наглядно, как мы, представить себе, какое положение занимает в трехмерном мире эта линия: все трехмерное не укладывается в сознании существа двухмерного. Двухмерный мыслитель высказался бы об этом в других выражениях: он сказал бы, что исследуемая им точка изменяет свое положение во «времени». То, что для нас является движением двухмерного мира (плоскости) в трехмерном пространстве, то для обитателя двухмерного мира представлялось бы как «течение времени». То, что для нас существует одновременно в пространстве трех измерений, — для них появляется последовательно в пространстве двух измерений.

Рассмотрим еще пример. Двухмерный мир (плоскость), двигаясь в трехмерном пространстве, наткнулся на тело в форме двойного конуса (см. рис.). Двухмерный обитатель плоскости, конечно, не может воспринять этот конус как тело; не может даже и вообразить его себе. Что же будет он видеть и думать, когда мир его наткнется на подобное трехмерное тело, и оно пройдет сквозь плоский мир? Проследим за этим. Сначала в двухмерном мире появится точка — вершина конуса. Затем, по мере дальнейшего продвижения плоского мира в направлении третьего измерения (т. е. «с течением времени», как сказал бы двухмерный мыслитель), точка превратится в небольшой кружок или эллипс — сечение конуса плоскостью двухмерного мира. Кружок будет расти, расширяться и, достигнув наибольшего размера, станет сокращаться, постепенно превратится в точку и вновь исчезнет. Двухмерный исследователь наблюдал историю зарождения, развития, увядания и исчезновения «кружка», между тем как мы, существа трехмерные, воспринимаем ту же вещь сразу, одновременно в трех измерениях. Для них он существовал в ряде последовательно воспринимаемых плоских сечений, для нас — весь целиком, как трехмерное тело. Движение плоскости в третьем измерении знакомого нам пространства переживается двухмерным существом как течение времени. Для него «прошедшее» конуса — это те его части, которые лежат по одну сторону его плоского мира (по ту, откуда плоскость движется); «будущее» конуса — те его части, которые расположены по другую сторону, а «настоящее» — пересечение конуса с двухмерным миром.
Приложим теперь те же рассуждения к миру трехмерному. Когда мы описываем историю изменений какой-нибудь вещи в нашем трехмерном пространстве, не даем ли мы последовательные изображения этой вещи во времени? Если так, то можно рассматривать время как четвертое измерение мира, измерение, в котором движется наш трехмерный мир; каждое явление, наблюдаемое в трехмерном мире, есть одно из последовательных «пересечений» нашего трехмерного мира с четырехмерною вещью. Существо четырех измерений могло бы сразу охватить всю историю вещи, всю ее «жизнь» в виде некоторого четырехмерного объекта, недоступного нашему воображению.
Само собою разумеется, что фантастическая мысль Уэллса — придумать механизм для произвольного движения в четвертом измерении — не свободна от внутренних противоречий и должна быть принимаема не иначе как чисто художественный прием, удобный для успешного развития интриги фантастической повести.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Глава 3 Время, пространство и свет
Глава 3 Время, пространство и свет «Декамерон» Джованни Боккаччо — одно из важнейших произведений европейской литературы XIV века, которое, возможно, оказало наибольшее влияние на последующее развитие итальянской и европейской литературы.В «Декамероне» описываются 10
Глава 3 Измерение времени
Глава 3 Измерение времени Мы живем не только в пространстве, но и движемся во времени. По этой причине уже с зарождения цивилизации и появления первых общественных отношений люди занялись организацией не только своих территорий, но и своего времени. В обществах
Глава 4 Измерение Земли
Глава 4 Измерение Земли Изучение движения небесных тел помогло определить единицы измерения времени, однако человека также интересовали очертания и размеры мира, в котором он жил, и он захотел измерить Землю. Птолемей не только внес вклад в измерение небес, но и стал
Глава 5 Измерение метра
Глава 5 Измерение метра В этой главе мы совершим краткий экскурс в историю метра. Сначала мы расскажем, как производились измерения в XVIII веке, с какими трудностями было сопряжено использование множества единиц измерения, а также в каких исторических обстоятельствах
Русь = Орда в первой половине XV века. Время усобиц
Русь = Орда в первой половине XV века. Время усобиц Эпоха от Дмитрия Донского до Ивана III очень слабо освещена источниками. Это — время усобиц, когда потомки Ивана Калиты (= Ярослава = Батыя) боролись между собой за власть. Это — известная смута середины XV века.Любопытно, что
Глава 9 Смутное время русской истории (Начало XVII века)
Глава 9 Смутное время русской истории (Начало XVII века) От смерти «Грозного» (= Симеона-Ивана) до Смуты Согласно романовской версии, «Грозный» умер в 1584 году. Согласно нашей гипотезе, это был престарелый хан Симеон (царское имя — Иван). В конце его правления большой вес в
Четвертое правило
Четвертое правило Первые три из приведенных четырех правил «соблюдаются твердо и поныне» (то есть в XIV веке), пишет Властарь, а вот четвертое правило — уже нарушено.Матфей Властарь совершенно правильно с точки зрения астрономии объясняет это, возникшее с течением
26. ИЗМЕРЕНИЕ РАССТОЯНИЙ
26. ИЗМЕРЕНИЕ РАССТОЯНИЙ Последнее замечание произвело на доктора Пункто сильное впечатление, ибо на обратном пути он только и говорил, что об измерении расстояний. Наш экскурсовод, возвращавшийся вместе с нами, не мог сообщить доктору Пункто ничего нового. Он не имел ни
Примечание редактора. Относительность пространства и времени
Примечание редактора. Относительность пространства и времени Рассказ «На мыльном пузыре» подводит непосредственно к вопросу об относительности пространства. Фантастический «микроген» обладает способностью уменьшать людей в произвольное число раз. Однако если бы
Примечание редактора живой планетарий
Примечание редактора живой планетарий Странная фантазия — приказать матросам «исполнять астрономические обязанности», будто бы возникшая, по словам моряка, в помутившемся уме капитана, вовсе не так сумасбродна и фантастична, как, пожалуй, склонны подумать иные
Примечание Я.И. Перельмана Действия над приближенными числами
Примечание Я.И. Перельмана Действия над приближенными числами Читателю, незнакомому с правилами действий над приближенными числами, вероятно, интересно будет хотя бы вкратце с ними ознакомиться, тем более что знание этих простых приемов, несомненно, окажется и
Примечание редактора
Примечание редактора Иллюстрация, приведенная в начале этой статьи, помещена в любопытной книге Сэма Лойда «Энциклопедия головоломок» (Нью-Йорк, 1914). Это большой том, заключающий 5000 разнообразных задач и развлечений, из которых тысяча иллюстрирована. Рисунок
Примечание редактора Диофант Александрийский
Примечание редактора Диофант Александрийский Упомянутый в конце очерка александрийский математик Диофант жил в III веке нашей эры. Им написана была «Арифметика», от которой до нас дошла только первая половина сочинения. В этом труде рассматриваются, между прочим,
Примечание редактора Увеселительная арифметика в.г. бенедиктова
Примечание редактора Увеселительная арифметика в.г. бенедиктова В библиотеке Русского Общества Любителей Мироведения в Ленинграде хранится найденная лишь в 1924 г. неопубликованная рукопись поэта В.Г. Бенедиктова, посвященная математическим развлечениям (поэт в
Измерение взаимопонимания
Измерение взаимопонимания Однажды, познакомившись в интернете с неким молодым человеком, я отправилась на свидание с ним – и молодой человек не нашел ничего лучше, как украсть мою туфлю прямо посреди ужина. В другом случае я отлучилась в туалет, а вернувшись,