Другіе способы дѣленія.
Другіе способы д?ленія.
1) Самымъ простымъ, общедоступнымъ путемъ д?ленія, правда длиннымъ и утомительнымъ, является зам?на д?ленія вычитаніемъ; поэтому вс? народы, которые находятся на низшихъ ступеняхъ развитія, производятъ д?леніе при ломощи вычитанія: потому также полезно было бы давать и малымъ д?тямъ н?сколько упражненій на посл?довательное вычитаніе, прежде ч?мъ переходить съ ними къ д?ленію. Прим?ровъ зам?ны д?ленія вычитаніемъ можно указать много у разныхъ народовъ, особенно же среди мало образованныхъ классовъ. Такъ, въ средніе в?ка въ Германіи среди простого народа часто употреблялся счетъ на маркахъ, т.-е. на костяшкахъ—костяшки эти клались въ колонны, въ особую колонну для каждаго разряда— въ такомъ случа? д?литель откладывался отъ д?лимаго столько разъ, сколько было возможно, и число отложенныхъ д?лителей показывало величину отв?та, потому что разд?лить—значитъ узнать, сколько разъ д?литель содержится въ д?лимомъ.
2) Зам?на д?ленія умноженіемъ н?сколько трудн?е, ч?мъ зам?на его вычитаніемъ; она не такъ доступна, понятна и наглядна; ее мы встр?чаемъ на т?хъ ступеняхъ развитія науки, когда совершается переходъ отъ простонародныхъ пріемовъ вычисленія къ точнымъ научнымъ пріемамъ. Такъ, напр., у индусовъ до выработки нормальныхъ способовъ д?ленія мы видимъ массу попытокъ привести его къ умноженію; при этомъ и само умноженіе совершается такимъ искусственнымъ порядкомъ, какой встр?чается еще въ глубокой древности у египтянъ, распространенъ былъ среди вс?хъ народовъ и пользуется до сегодня популярностью среди самоучекъ и немудрыхъ счетчиковъ. Для поясненія беремъ прим?ръ у Евтокія, греческаго писателя въ VI в. по Р. X. Требуется разд?лить 6152 на 15. Для этого Евтокій составляетъ рядъ чиселъ, кратныхъ 15-ти: 15, 30, 60, 90, 120,150, 180, 210: 240, 270, 300, 600, 900,1200, 1800, 2100, 2400, 2700, 3000, 6000. Рядъ этотъ, какъ видимъ, содержитъ не вс? кратныя числа, но онъ только пролагаетъ путь къ тому, чтобы догадаться, что 6000 кратно 15, и что въ 6000 содержится 15 четыреста разъ. Остается теперь разд?лить 152 на 15. Для этого Евтокій снова соcтавляетъ подобный же рядъ: 15, 30, 60, 90, 150 и выводитъ, что 15 въ 150-ти содержится 10 разъ. Всего въ отв?т? получится 410 и 2 въ. остатк?.
3) Сл?дующей попыткой къ упрощенію д?ленія является расчлененіе д?лителя на производителей; оно и теперь прим?няется съ большимъ усп?хомъ, особенно при устномъ счет?; именно, чтобы разд?лить, напр., на 8, можно разд?лить данное число пополамъ, полученный отв?тъ опять пополамъ и вновь полученный отв?тъ еще разъ пополамъ. Для письменнаго вычисленія такой порядокъ особенно рекомендуется итальянцемъ Леонардо Фибонначи (около 1200 г. по Р. X.); при этомъ, въ случа? дробнаго частнаго, у него получаетея рядъ дробей съ возрастающиии знаменателями.
Оригинальный пріемъ, основанный на той же иде?, даетъ Апіанъ (XVI в. по Р. X.); у него проскальзываетъ н?что въ род? десятичныхъ дробей, хотя въ его время теорія десятичныхъ дробей находилась въ самомъ зачаточномъ состояніи.
Положимъ, ему надо разд?лить 11664 на 48; онъ сперва вычисляетъ 11664:6, потомъ отъ каждаго полученнаго разряда беретъ вооьмую долю, это легко достигается т?мъ, что каждый разрядъ по-множается на 0125, такъ какъ 1:8=0,125. Все д?йствіе можно представить въ такомъ вид?.
Объясняется это вычисленіе сл?дующимъ образомъ. Д?лимъ 11 тыс. на 6, получаемъ 5 въ остатк? и 1 въ частномъ; 5 пишемъ надъ 1, а единицу частнаго умножаемъ на 0125 и пишемъ прямо подъ чертой. Дал?е, 56 сот.: 6=9 сот. и 2 сотни въ остатк?; остатокъ пом?щаемъ надъ 6-ю, а 9 надо умножить на 0125; для этого Апіанъ множитъ отд?льно 0125 на 5 и на 4, получаетъ 0625 и 05; при записываніи цифра 5 у числа 0625 подвигается вправо за черту, потому что это будутъ уже не ц?лыя единицы, а только десятыг доли. Теперь 26 десятковъ надо д?лить на 6, будетъ въ частномъ 4 десятка; помножить 4 на 0125, получится 5—столько простых единицъ, ихъ пишемъ. Наконецъ, 24:6 — 4, 4?0125 = 5, это будутъ десятыя доли, и ихъ сл?дуетъ писать за чертой вправо. Остается сложить вс? отд?льныя частныя и тогда получится общій отв?тъ 243.
4) Вс? три предыдущихъ способа уступаютъ нашему, которымъ мы, обыкновенно, пользуемся: они трудн?е и длинн?е нашего. Но вотъ методъ Тиллиха, предложенный имъ въ 1806 г. Онъ уже вытекаетъ изъ нормальнаго пріема и стремится еще бол?е его усовершенство-вать. Суть его состоитъ въ сл?дующемъ. При д?леніи на однозначное число, напр., на 3, не сносятъ остатковъ къ сл?дующему низшему разряду, а стараются разд?лить каждый разрядъ вполн?, хотя бы для этого пришлось воспользоваться и дробнымъ частнымъ. Согласно этому, д?йствіе 56789:3 располагается такъ:
Прежде всего д?лится 5 дес. тысячъ на 3, на каждую часть придется по 1? дес. тысячъ, изъ этого 1 дес. тыс. сносится въ частное, а ? дес. тыс. пока оставляются. Зат?мъ д?лимъ 6 тысячъ на 3, будетъ по 2 тысячи, ихъ такъ и пишемъ въ частномъ. Точно такимъ же образомъ 7 сот.: 3 = 2? сотни, 8 дес.: 3 — 2? дес и наконецъ 9:3 = 3. При этомъ вс? ц?лые отв?ты сносятся въ частное, а дроби пока оставляются. Дроби эти приводятся къ нормальному виду сл?дующимъ путемъ. ? десятка тысячъ дадутъ 6 тысячъ и ?тысячи; эти ? тысячи составятъ 6? сотни, да у насъ еще ? сотни, всего получится 7 сотенъ, ихъ такъ и пишемъ. Останется только церевести ?десятка въ единицы, будетъ 6?. Окончательный отв?тъ составитъ 18929?.
Въ иныхъ прим?рахъ можно разбивать д?лимое на группы въ 2 разряда, и это представляетъ немалое удобство. Такъ, ? отъ 339765 Тиллихъ сов?туетъ находить д?леніемъ 33 дес. тысячъ на 4, 97 сотенъ на 4 и 65-ти единицъ на 4. Тогда форма вычисленія получится сл?дующая:
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Австрійскій способъ дѣленія.
Австрійскій способъ д?ленія. Подъ именемъ австрійскаго способа разум?ется такой, который хотя и похожъ на нашъ нормальный, но отличается отъ него большімъ прим?неніемъ устнаго счета. Австрійскій способъ можно считать шагомъ впередъ сравнительно съ нашимъ способом, въ
Испанскій способъ дѣленія.
Испанскій способъ д?ленія. Это самая употребительная, самая распространенная форма д?ленія. Теперь ея уже н?тъ въ учебникахъ и объ ней не вспоминаютъ, но почти въ теченіе тысячи л?тъ, съ IX в?ка до XIX, она являлась общеизв?стной и популярной формой. Начало ей положили арабы;
Римскій способъ дѣленія.
Римскій способъ д?ленія. Римляне были расположены къ счету круглыми числами, и поэтому они любили зам?нять числа, близкія къ круглымъ, при посредств? этихъ круглыхъ. Прим?ровъ этому можно привести очень много, хотя бы: 18 по ихъ нумераціи выражается черезъ 20 безъ двухъ, 90
Правило пропорціональнаго дѣленія.
Правило пропорціональнаго д?ленія. Пропорціональное д?леніе съ давнихъ временъ прилагалось тогда, когда требовалось разд?лить зав?щанный капиталъ между насл?дниками. Поэтому въ сборникахъ, обыкновенно, пом?щалось н?сколько задачъ этого рода. Вотъ задача изъ сборника
CURIOSA MATHEMATICA, ЧАСТЬ III КНИГА II Короткие способы выполнения некоторых арифметических процедур
CURIOSA MATHEMATICA, ЧАСТЬ III КНИГА II Короткие способы выполнения некоторых арифметических процедур Глава 1. УМНОЖЕНИЕ ДЛИННЫХ ЧИСЕЛ Основная идея данного способа пришла мне в голову 19 сентября 1879 года. Я размышлял над большим