23

Контраст между чистой и прикладной математикой выступает, по-видимому, с наибольшей ясностью в геометрии. Существует наука чистой геометрии(17), включающая в себя многочисленные геометрии: проективную, евклидову, неевклидову и т. д. Каждая из этих геометрий переставляет собой модель, образ из идей, и судить о ней следует по интересу и красоте её индивидуального "образа". Это карта или картина, совместный продукт многих рук, частичная и несовершенная (но тем не менее точная на всём своём протяжении) копия фрагмента математической реальности. Но для нас сейчас важно то, что есть нечто такое, по отношению к чему чистые геометрии не являются картинами, а именно: пространственно-временная реальность физического мира. В том, что чистые геометрии не могут быть картинами реальности, нет ни малейшего сомнения, так как землетрясения и затмения не принадлежат к числу математических концепций.

Для постороннего человека это звучит несколько парадоксально, но для геометрии это - труизм. Возможно, я смогу пояснить свою мысль на примере: предположим, что я читаю лекцию по одной из систем геометрии, например, по обычной евклидовой геометрии, и рисую на доске фигуры, чтобы стимулировать воображение моей аудитории, - грубые чертежи из прямых, окружностей или эллипсов. Ясно, что истинность доказываемых мной теорем не зависит от качества моих чертежей. Их функция состоит лишь в том, чтобы донести до моих слушателей то, что я имею в виду, и если я смогу это сделать, то не будет пользы от того, что их перерисует искусный чертёжник. Мои чертежи выполняют вспомогательную педагогическую функцию и не являются тем, что составляет предмет моей лекции.

Сделаем ещё один шаг. Помещение, в котором я читаю лекцию, составляет часть физического мира и само обладает определённым образом. Изучение этого образа и общего образа физической реальности само по себе является наукой, которую можно назвать "физической геометрией". Предположим теперь, что в аудиторию поместили мощную динамомашину или массивное гравитирующее тело. Физики скажут нам, что геометрия помещения изменилась, что весь его физический образ немного, но совершенно определённо исказился. Стали ли ложными теоремы, которые я доказал. Ясно, что было бы глупо ожидать, будто на доказательствах теорем, которые я приводил на лекции, каким-то образом сказалось наличие в аудитории динамомашины или гравитирующего тела. Это аналогично предположению о том, что пьеса Шекспира изменилась от того, что некий читатель пролил на страницу чай. Пьеса не зависит от страниц, на которых она напечатана, и "чистые геометрии" не зависят от комнаты, в которой читается лекция или от любых других деталей физического мира.

Такова точка зрения чистого математика. Естественно, что прикладные математики, математические физики придерживаются другой точки зрения, так как они имеют дело с самим физическим миром, который также обладает своей структурой, или образом. Мы не можем дать точное описание этого образа, как в случае чистой геометрии, но можем сказать о нём нечто важное. Мы можем описать, иногда с достаточной точностью, иногда - лишь в общих чертах, отношения между некоторыми составляющими структуры физического мира и сравнить их с точными отношениями между составляющими какой-нибудь системы чистой геометрии. Мы можем уловить некоторые сходства между двумя наборами отношений, и тогда чистая геометрия обретает интерес для физиков. В этом случае мы получаем карту, согласующуюся с фактами физического мира. Геометр предлагает физику целый набор карт на выбор. Возможно, что одна карта будет лучше соответствовать фактам, чем другие. В этом случае геометрия, порождающая лучшую карту, окажется геометрией, наиболее важной для прикладной математики. Можно добавить, что оценка такой геометрии даже со стороны чистого математика может повыситься, так как нет математика настолько чистого, чтобы он был напрочь лишен интереса к физическому миру, но в той мере, в какой он уступит этому искушению, он утратит свою позицию чистого математика.