Евклидова «Истина»

До начала ХIX века, если какую-то отрасль знаний и считали апофеозом истинности и несомненности, это была евклидова геометрия, та самая традиционная геометрия, которой учат в школе. Поэтому не приходится удивляться, что великий голландско-еврейский философ Барух Спиноза (1632–1677) назвал свой труд, где предпринял смелую попытку объединить науку, религию, этику и логику «Этика, доказанная в геометрическом порядке». Более того, несмотря на четкие различия между идеальным платоновским миром математических форм и физической реальностью, большинство ученых считали объекты евклидовой геометрии просто дистиллированными абстрактными соответствиями реальных физических предметов. Даже убежденные эмпирики вроде Дэвида Юма (1711–1776), который настаивал, что самые основы науки гораздо более сомнительны, чем можно заподозрить, были убеждены, что евклидова геометрия надежна, как Гибралтарская скала. В «Трактате о человеческом разумении» («An Enquiry Concerning Human Understanding») Юм определяет «истины» двух типов (Hume 1748).

Все объекты, доступные человеческому разуму или исследованию, по природе своей могут быть разделены на два вида, а именно: на отношения между идеями и факты. К первому виду относятся… вообще всякое суждение, достоверность которого или интуитивна, или демонстративна. …К такого рода суждениям можно прийти благодаря одной только мыслительной деятельности, независимо от того, что существует где бы то ни было во Вселенной. Пусть в природе никогда бы не существовало ни одного круга или треугольника, и все-таки истины, доказанные Евклидом, навсегда сохранили бы свою достоверность и очевидность.

Факты, составляющие второй вид объектов человеческого разума, удостоверяются иным способом, и, как бы велика ни была для нас очевидность их истины, она иного рода, чем предыдущая. Противоположность всякого факта всегда возможна, потому что она никогда не может заключать в себе противоречия… Суждение «Солнце завтра не взойдет» столь же ясно и столь же мало заключает в себе противоречие, как и утверждение, что оно взойдет, поэтому мы напрасно старались бы обосновать его ложность демонстративным путем (пер. С. Церетели).

Иначе говоря, хотя Юм, как и все эмпирики, полагал, что любое знание коренится в наблюдении, геометрия и ее «истины» по-прежнему занимали в его представлении привилегированное положение.

Величайший немецкий философ Иммануил Кант (1724–1804) не во всем был согласен с Юмом, однако тоже превозносил евклидову геометрию, приписывая ей и абсолютную точность, и бесспорную достоверность. В своем знаменитом труде «Критика чистого разума» Кант сделал попытку в некотором смысле обратить отношения между сознанием и физическим миром. Кант отошел от представления о том, что физическая реальность накладывает отпечаток на сознание, остающееся, в сущности, пассивным, Кант наделил сознание активной функцией «конструирования» или «переработки» воспринимаемой Вселенной. Он направил внимание вовнутрь и задался вопросом не о том, что мы можем познать, но о том, как именно мы можем познать то, что можем познать[99]. Он объяснил, что хотя наши глаза регистрируют частички света, эти частички не формируют образ в нашем сознании, пока мозг не переработает и не упорядочит информацию. Ключевая роль в этом процессе переработки приписывалась интуитивному или синтетическому априорному представлению о пространстве, которое, в свою очередь, как полагал Кант, основано на евклидовой геометрии. Кант был убежден, что евклидова геометрия – это единственный путь к переработке и концептуализации пространства, и это интуитивное универсальное знание о пространстве и лежит в основе нашего восприятия мира природы. Вот как об этом пишет сам Кант (Kant 1781).

Пространство не есть эмпирическое понятие, выводимое из внешнего опыта… Пространство есть необходимое априорное представление, лежащее в основе всех внешних созерцаний… На этой априорной необходимости основывается аподиктическая достоверность всех геометрических основоположений и возможность их априорных построений. Если бы это представление о пространстве было a posteriori приобретенным понятием, почерпнутым из общего внешнего опыта, то первые основоположения математического определения были бы только восприятием. Следовательно, на них была бы печать случайности, свойственной восприятию, и суждение, что между двумя точками возможна лишь одна прямая линия, не было бы необходимым; всякий раз этому учил бы нас опыт (пер. Н. Лосского).

Проще говоря, по Канту, если мы воспринимаем какой-то предмет, этот предмет непременно пространственный и евклидовский.

Идеи Юма и Канта выдвинули на первый план два разных, но одинаково важных аспекта, традиционно приписываемых евклидовой геометрии. Первое – утверждение, что евклидова геометрия дает единственно возможное точное описание физического пространства. Второе – отождествление евклидовой геометрии с жесткой, не подлежащей сомнению и непогрешимой дедуктивной структурой. В совокупности эти два предполагаемых качества предоставляли математикам, физикам и философам неоспоримые доказательства, что существуют незыблемые и конкретные истины, описывающие вселенную. До XIX века подобные утверждения воспринимались как данность. Но верны ли они на самом деле?

Основы евклидовой геометрии заложил греческий математик Евклид Александрийский примерно в 300 году до нашей эры. Он создал монументальный тринадцатитомный труд под названием «Начала», где попытался воздвигнуть геометрию на хорошо определенной логической основе. Начал он с девяти аксиом, которые, как предполагалось, несомненно истинны, и четырех постулатов, а затем на основе этих аксиом и постулатов исключительно логическими рассуждениями доказал огромное количество теорем.

Первые четыре постулата Евклида крайне просты и на удивление лаконичны[100]. Первый из них, к примеру, гласит, что «от всякой точки до всякой точки можно провести прямую линию» (здесь и далее цитаты из «Начал» Евклида даны в пер. Д. Мордухай-Болтовского). Четвертый – что «все прямые углы равны между собой». А вот пятый постулат – «постулат о параллельности» – сформулирован уже сложнее и значительно менее очевиден: «Если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то эти две прямые, продолженные неограниченно, встретятся с той стороны, где углы меньше двух прямых». На рис. 39 приведен чертеж, иллюстрирующий этот постулат. В истинности этого утверждения никто не сомневался, однако ему явно не хватает краткости и убедительности остальных постулатов. Все указывает на то, что пятый постулат не очень нравился и самому Евклиду: он не прибегает к нему при доказательстве первых двадцати восьми теорем в «Началах»[101]. Эквивалентный вариант «пятого постулата», который чаще всего цитируется в наши дни, впервые появился в комментариях греческого математика Прокла в V веке, однако широко известен как «аксиома Плейфэра» в честь шотландского математика Джона Плейфэра (1748–1819). Он гласит: «если дана линия и точка, лежащая вне ее, через эту точку возможно провести одну и только одну линию, параллельную данной» (см. рис. 40). Два варианта постулата эквивалентны в том смысле, что аксиома Плейфэра (вместе с другими аксиомами) требует первоначального пятого постулата Евклида или наоборот.

С течением веков недовольство пятым постулатом росло, и это привело к целому ряду неудачных попыток все-таки доказать его на основании остальных постулатов и аксиом или заменить его каким-то более очевидным постулатом. Когда эти попытки провалились, другие геометры попытались ответить на интересный вопрос из серии «А что, если»: а что, если пятый постулат на самом деле неверен? Размышления в этом направлении порождали неприятные сомнения в том, так ли уж самоочевидны евклидовы аксиомы – может быть, они просто основаны на повседневном опыте?[102] А окончательный – и крайне неожиданный – вердикт был вынесен в XIX веке: можно создать новые виды геометрий, если произвольно выбрать постулат, отличающийся от пятого постулата Евклида. Более того, эти «неевклидовы» геометрии в принципе способны описывать физическое пространство с той же точностью, что и евклидова!

Рис. 39

Рис. 40

Позвольте мне сделать здесь небольшую паузу, чтобы уяснить значение выражения «произвольно выбрать». В течение тысячелетий евклидова геометрия считалась уникальной и неизбежной – единственно верным описанием пространства. А когда стало ясно, что можно выбирать постулаты произвольно и получать при этом не менее логичное описание пространства, вся концепция перевернулась с ног на голову. Надежная, тщательно выстроенная дедуктивная схема вдруг стала больше похожа на игру, в которой постулаты играли роль правил и не более того. Возьмешь другие постулаты – сыграешь в другую игру. Это открытие имело поистине сокрушительные последствия для понимания природы математики.

Почву для решительной атаки на евклидову геометрию подготовили сразу несколько математиков, обладавших широким мировоззрением. Особенно выделялись среди них иезуит Джироламо Саккери (1667–1733), исследовавший то, к каким последствиям может привести замена пятого постулата каким-то другим утверждением, и немецкие математики Георг Клюгель (1739–1812) и Иоганн Генрих Ламберт (1728–1777), которые первыми поняли, что могут существовать и другие геометрии, альтернативные евклидовой. И все же нужен был кто-то, кто забил бы последний гвоздь в крышку гроба представлений о том, что единственное возможное описание пространства – это евклидова геометрия. Заслуга принадлежит троим математикам – из России, Венгрии и Германии.