Хитросплетения жизни

Стимулом для создания теории узлов была ошибочная модель атома, однако кончина этой модели не обескуражила математиков. Напротив, они с превеликим энтузиазмом пустились в далекий и опасный путь и стали разбираться в узлах как таковых. Легко представить себе, в какой восторг они пришли, когда теория узлов вдруг оказалась ключом к пониманию фундаментальных процессов, в которых участвуют молекулы жизни. Неужели вам мало такого замечательного примера «пассивной» роли чистой математики в объяснении природных явлений?

Дезоксирибонуклеиновая кислота, она же ДНК, – это генетический материал всех клеток на свете. Она состоит из двух очень длинных цепочек, которые миллионы раз перекручены, так что получается двойная спираль. По всей длине этих цепочек, которые можно представить себе как боковины лестницы, чередуются молекулы сахара и фосфата. Ступеньки этой лестницы состоят из пар оснований, соединенных водородными связями по определенным правилам (аденин создает связи только с тимином, а цитозин – только с гуанином; рис. 58).

Когда клетка делится, первым делом начинается самовоспроизведение – репликация ДНК, чтобы каждой из дочерних клеток досталось по копии. Подобным же образом в процессе транскрипции, при которой генетическая информация из ДНК копируется в РНК, участок двойной спирали ДНК раскручивается, и образцом для копирования служит только одна из двух цепочек. После завершения синтеза РНК цепочки ДНК снова скручиваются в спираль. Однако и репликация, и транскрипция – дело непростое, поскольку ДНК так туго скручена и перепутана (информацию нужно хранить в компактном виде), что без особых технологий распаковки процессы, лежащие в основе самой жизни, не могли бы идти гладко. Кроме того, чтобы процесс репликации дошел до конца, получившиеся молекулы ДНК должны быть без узлов, а родительская ДНК в конце концов должна вернуться к первоначальной конфигурации.

Рис. 58

Рис. 59

Всем этим развязыванием и распутыванием занимаются особые вещества – ферменты[150]. Ферменты умеют пропускать цепочки ДНК друг через друга – для этого они на время разрывают их и связывают освободившиеся концы по-другому. Знакомо, правда? Именно такие хирургические операции предложил Конвей для распутывания математических узлов (как изображено на рис. 56). Иначе говоря, с топологической точки зрения ДНК – сложный узел, и для репликации и транскрипции нужно, чтобы ферменты его развязали. С помощью теории узлов можно понять, насколько трудно распутать ДНК, и таким образом можно изучать свойства ферментов, которые отвечают за распутывание. Мало того, при помощи средств экспериментальной визуализации – электронной микроскопии и электрофореза в полиакриламидном геле – ученые могут наблюдать и измерять изменения в образовании узлов и сцеплений ДНК, вызванные ферментами (на рис. 59 показана электронная микрофотография узла ДНК). Помимо всего прочего, изменение числа пересечений в узле ДНК дает биологам возможность оценить скорость реакций с участием ферментов: на сколько пересечений в минуту может повлиять фермент в той или иной концентрации.

Однако теория узлов нашла неожиданное применение не только в молекулярной биологии. Об узлах речь идет и в теории струн – современной попытке сформулировать универсальную теорию, объясняющую все взаимодействия в природе.