Говорите ли вы по-математически?

В предыдущем разделе я сравнил смысл абстрактного понятия числа со значением слова. Можно ли считать математику своего рода языком? Открытия математической логики, с одной стороны, и лингвистики – с другой, показывают, что в некоторой степени так и есть. Труды Буля, Фреге, Пеано, Рассела, Уайтхеда, Гёделя и их современных последователей, в особенности в областях вроде философской семантики и синтаксиса и в параллельных направлениях лингвистики, показали, что грамматика и логические рассуждения тесно связаны с алгеброй символической логики. Но почему тогда на свете существует более 6500 языков и только одна математика? На самом деле у многих языков при всем их разнообразии общая основа. Скажем, американский лингвист Чарльз Хокетт (1916–2000) в 60-е годы привлек внимание к тому обстоятельству, что все языки обладают встроенными механизмами для создания новых слов и фраз («луноход», «веб-страница», «банкомат» и так далее)[159]. Подобным же образом все человеческие языки допускают отвлеченные понятия («сюрреализм», «отсутствие», «величие»), отрицание («нет», «не бывает»), условные конструкции («Если бы бабушке приделали колесики, она стала бы автобусом»). Пожалуй, важнейшие свойства любых языков – это незамкнутость и свобода стимуляции. Первое – это способность создавать неслыханные ранее высказывания и понимать их[160]. Например, я легко могу создать предложение вроде «Плотину Гувера скотчем не починишь», и, хотя вам, скорее всего, эта фраза раньше не попадалась, вы без труда ее поймете. Свобода стимуляции – это власть выбирать, как реагировать на полученный стимул и реагировать ли на него вообще. Например, на вопрос, который ставит автор-исполнитель Кэрол Кинг в своей песне «Будешь ли ты и завтра любить меня?», можно ответить и «Откуда я знаю, не умру ли я до завтра», и «Конечно», и «Да я и сегодня тебя не люблю», и «Не больше, чем свою собачку», и «Честное слово, это ваша лучшая песня!», и даже «Интересно, кто в этом году выиграет Открытый чемпионат Австралии по теннису». Легко видеть, что многие эти черты (абстракция, отрицание, незамкнутость и способность развиваться) характерны и для математики[161].

Как я уже отмечал, Лакофф и Нуньес подчеркивают роль метафор в математике. Кроме того, когнитивисты настаивают, что все человеческие языки прибегают к метафорам для выражения практически чего угодно. Но и это еще не все: с 1957 года, когда знаменитый лингвист Ноам Хомски опубликовал свою революционную книгу «Синтаксические структуры» (Noam Chomsky, «Syntactic Structures»), многие лингвисты занялись так называемой универсальной грамматикой – общими принципами, которые управляют всеми языками[162]. Иначе говоря, то, что кажется на первый взгляд вавилонским разнообразием языков, на самом деле обладает неожиданным структурным сходством. Вдумайтесь – ведь иначе невозможно было бы составить словари для перевода с одного языка на другой!

Вероятно, вас до сих пор удивляет, что математика такая однородная – и по тематике, и по системе условных обозначений. Особенно интересна первая часть этого вопроса. Большинство математиков согласны, что математика в известном нам виде развилась из основных отраслей геометрии и арифметики, которые разрабатывали и применяли на практике древние вавилоняне, египтяне и греки. Однако так ли уж неизбежно, что математика должна отталкиваться именно от этих дисциплин?

Специалист по информатике Стивен Вольфрам в своей объемной книге «Наука нового типа» (Wolfram 2002) доказывает, что это не обязательно. В частности, Вольфрам демонстрирует, как можно развить математику совершенно нового типа, если начинать с простого набора правил (клеточных автоматов), которые действуют как короткие компьютерные программы. Эти клеточные автоматы можно (по крайней мере, в принципе) сделать основными инструментами моделирования природных явлений – вместо дифференциальных уравнений, которые главенствовали в естественных науках на протяжении трех столетий. Но что же тогда подтолкнуло древние цивилизации к открытию и изобретению именно нашей «марки» математики? Наверняка сказать невозможно, но, вероятно, это связано в основном с особенностями человеческой системы восприятия. Люди без труда замечают и распознают грани, прямые линии, плавные кривые. Скажем, обратите внимание, с какой точностью лично вы можете определить (на глаз), когда линия идеально прямая, и с какой легкостью отличаете правильную окружность от немного эллиптической. Вероятно, эти особенности восприятия оказали сильное влияние на то, как люди видят мир, и поэтому привели к созданию математики, основанной на дискретных объектах (арифметика) и на геометрических фигурах (евклидова геометрия).

Единство системы обозначений, вероятно, стало результатом так называемого «Эффекта “Майкрософт Виндоус”». Операционной системой «Майкрософт» пользуется весь мир, и не потому, что этого нельзя избежать, а просто потому, что она захватила большую часть рынка программного обеспечения и имеет смысл приобретать ее просто ради удобства связи и доступности различных приложений. Подобным же образом западная система условных обозначений некоторым образом навязана математическому миру.

Интересно, что астрономия и астрофизика, возможно, еще не до конца сыграли свою роль в ответе на вопрос об изобретении или открытии. Не так давно поиски планет вне Солнечной системы показали, что около пяти процентов всех звезд обладают по крайней мере одной гигантской планетой вроде Юпитера и что эта доля примерно одинакова по всему Млечному пути. Точный процент планет земного типа пока не известен, но есть вероятность, что в галактике их миллиарды. Даже если лишь очень маленькая, но все же отличающаяся от нуля доля этих «Земель» находится в обитаемой зоне (на орбите, которая проходит от звезды на таком расстоянии, что делает возможным существование на поверхности планеты жидкой воды), вероятность возникновения жизни как таковой и, в частности, разума на таких планетах больше нуля. А если нам удастся открыть разумную жизнь и наладить с ней коммуникацию, можно будет получить бесценные сведения о том, какие формальные методы объяснения устройства космоса разрабатывают другие цивилизации. И тогда мы не просто добьемся невообразимых успехов в понимании происхождения и эволюции жизни, но и получим возможность сравнить свою логику с логическими системами потенциально более развитых существ.

Если же взять куда более спекулятивную ноту, то некоторые космологические сценарии, например так называемая хаотическая теория инфляции, предсказывают возможность существования множественных вселенных. Не исключено, что в иных таких вселенных не только значения фундаментальных физических постоянных (например, силы различных типов взаимодействий или отношения масс субатомных частиц) отличаются от наших, но и вообще правят совсем другие законы природы.

Астрофизик Макс Тегмарк утверждает, что каждой возможной математической структуре должна соответствовать (или, по его словам, соответствует) своя Вселенная[163]. Если это так, то перед нами доведенная до предела версия позиции «Вселенная есть математика»: с математикой идентифицируется даже не один мир, а целый их ансамбль. К сожалению, эти умозаключения не просто радикальны и на данный момент не подлежат экспериментальной проверке, но и противоречат, по крайней мере, в упрощенном виде, так называемому принципу заурядности.[164]. Как я писал в главе 5, если выбрать на улице случайного прохожего, то с вероятностью 95 % его рост попадет в пределы двух стандартных отклонений от среднего роста. Подобную же аргументацию следует применять и к свойствам вселенных. Однако количество возможных математических структур с увеличением сложности стремительно возрастает. Это значит, что самая заурядная структура, близкая к средней, должна быть необычайно сложной. А это не вяжется с относительной простотой нашей математики и наших теорий Вселенной, а значит, не соответствует естественным представлениям о том, что наша Вселенная должна быть типичной.