Число 10101

После сказанного о числе 1001 для вас уже не будет неожиданностью увидеть в витринах нашей галлереи число 10101. Вы догадаетесь, какому именно свойству обязано число это такою честью. Оно, как и число 1001, дает удивительный результат при умножении, - но не трехзначных чисел, а двузначных; каждое двузначное число, умноженное на 10101, дает в результате само себя, написанное трижды. Например:

73 x 10101 = 737373;

21 x 10101 = 212121.

Причина уясняется из следующей строки:

Задача № 31

Можно ли проделывать с помощью этого числа фокусы необычайного отгадывания, как с помощью числа 1001?

Решение

Да, можно. Здесь даже возможно обставить фокус эффектнее, разнообразнее, если иметь в виду, что 10101 есть произведение четырех простых чисел:

10101 = 3x7x13x37.

Предложив первому гостю задумать какое-нибудь двузначное число, вы предлагаете второму приписать к нему то же число, а третьему приписать то же число еще раз. Четвертого гостя вы просите разделить получившееся шестизначное число, например, на 7; пятый гость должен разделить полученное частное на 3; шестой гость делит то, что получилось, на 37 и, наконец, седьмой делит этот результат на 13, - при чем все 4 деления выполняются без остатка. Результат последнего деления вы просите передать первому гостю: это и есть задуманное им число.

При повторении фокуса вы можете внести в него некоторое разнообразие, обращаясь каждый раз к новым делителям. А именно, вместо четырех множителей 3x7x13x37 можете взять следующие группы трех множителей: 21x13x37; 7x39x37; 3x91x37; 7x13x111.

Число это - 10101 - пожалуй, даже удивительнее волшебного числа Шехеразады, хотя и менее его известно своими поразительными свойствами. А между тем о нем писалось еще двести лет тому назад в «Арифметике» Магницкого, в той главе, где приводятся примеры умножения «с некоим удивлением». Тем с большим основанием должны мы включить его в наше собрание арифметических диковинок.