Флорида 2000 года, слизевик и как выбрать второго пилота

Слизевой гриб Physarum polycephalum (физарум многоголовый) – удивительный маленький организм. Большую часть своей жизни он проводит как крошечная клетка, отдаленно напоминающая амебу. Однако при подходящих условиях тысячи таких организмов объединяются в единый коллектив под названием «плазмодий»; в этой форме слизевик имеет ярко-желтый цвет и становится настолько большим, что его можно видеть невооруженным глазом. В природе слизевик живет на разлагающихся растениях. В лабораторном существовании он очень любит овсяные хлопья.

Вас, наверное, удивляет, почему мы должны обсуждать психологию плазмодиального слизевого гриба – у нет мозга, нет вообще никакой нервной системы, не говоря уже о мыслях и чувствах. Однако слизевик, как и любое другое живое существо, умеет принимать решения, причем интересно, что они у него довольно правильные. В ограниченном мире слизевика такие решения в той или иной степени сводятся к следующему: «перемещаться к тому, что мне нравится» (овес), «удаляться от того, что мне не нравится» (яркий свет). Каким-то образом слизевик посредством децентрализованного мыслительного процесса способен эффективно справиться с такой задачей. Иными словами, слизевика можно научить проходить через лабиринт{259}[292]. (Правда, для этого понадобится много времени и много овсяных хлопьев.) Биологи рассчитывают на то, что, разобравшись с тем, как слизевик ориентируется в своем мире, они смогут открыть окно в эволюционный рассвет познания.

Даже здесь, в случае самого примитивного способа принятия решений, мы сталкиваемся с загадочным феноменом. Таня Лэтти и Мэдлин Бикман из Сиднейского университета изучали, как слизевики справляются с принятием трудных решений{260}. Выглядит это примерно так. На одной стороне чашки Петри находится три грамма овсяных хлопьев, на другой – пять грамм хлопьев, но на эти хлопья направлен ультрафиолетовый свет. Вы размещаете слизевика в центре чашки Петри. Что он будет делать?

Лэтти и Бикман обнаружили, что при таких условиях слизевик выбирает каждый из вариантов примерно в половине случаев: дополнительное количество пищи почти полностью компенсирует неприятные ощущения из-за ультрафиолетового света. Если вы были бы классическим экономистом вроде тех, с которыми Дэниел Эллсберг работал в RAND, вы сказали бы, что маленькая кучка овсяных хлопьев в темноте и кучка хлопьев побольше на свету имеют для слизевика одинаковую полезность, поэтому гриб колеблется в выборе между этими двумя вариантами.

Замените пять грамм хлопьев десятью граммами – и этот баланс нарушен: слизевик каждый раз направляется в сторону кучки хлопьев весом десять грамм, независимо от того, освещена эта кучка или нет. Эксперименты такого рода предоставляют нам информацию о приоритетах слизевика и о том, как он принимает решения, когда эти приоритеты вступают в противоречие друг с другом. Кроме того, в ходе таких экспериментов слизевой гриб ведет себя как довольно разумное существо.

Но затем произошло нечто неожиданное. Экспериментаторы попытались разместить слизевика в чашке Петри с тремя вариантами выбора: три грамма овсяных хлопьев в темноте (3-темнота), пять грамм овсяных хлопьев на свету (5-свет) и один грамм хлопьев в темноте (1-темнота). Мы можем предположить, что слизевик почти никогда не будет приближаться к кучке «1-темнота»: в кучке «3-темнота» больше хлопьев, и она находится в темноте, а значит, это явно более предпочтительный вариант. И действительно, слизевик почти никогда не выбирает вариант «1-темнота».

Более того, мы допускаем, что, поскольку в прошлом слизевик находил варианты «3-темнота» и «5-свет» одинаково привлекательными, он продолжит делать это и в новых условиях. В экономических терминах это значит, что наличие нового варианта не должно менять того факта, что варианты «3-темнота» и «5-свет» имеют одинаковую полезность. Но нет: когда есть вариант «1-темнота», слизевик на самом деле меняет свои предпочтения, выбирая вариант «3-темнота» в три раза чаще, чем вариант «5-свет»!

Что происходит?

Даю подсказку: маленькая кучка хлопьев в темноте играет в данной ситуации ту же роль, что и Росс Перо во время выборов.

На языке математики эта ситуация обозначается термином «независимость от посторонних альтернатив». Этот принцип гласит, что кем бы вы ни были – слизевиком, человеком или демократической страной, – если у вас есть два варианта выбора А и Б, наличие третьего варианта В не должно влиять на то, какой из вариантов А и Б нравится вам больше. Если вы решаете, какой автомобиль вы хотели бы иметь: «Тойота Приус» или «Хаммер», – не имеет значения, есть ли у вас еще и «Форд Пинто». Вы ведь точно знаете, что не собираетесь выбирать «Форд». Так какое отношение он может иметь к вашему выбору?

Или возьмем более близкую к политике ситуацию. Пусть вместо автодилера будет штат Флорида, вместо автомобиля «Приус» – Эл Гор, вместо «Хаммера» – Джордж Буш-младший, а вместо «Форда Пинто» – Ральф Нейдер. Во время президентских выборов 2000 года Джордж Буш получил 48,85 % голосов, Альберт Гор – 48,84 % голосов. Пинто получил 1,6 % голосов.

Во время выборов 2000 года во Флориде сложилась следующая ситуация. Ральф Нейдер не имел шансов получить голоса коллегии выборщиков штата Флорида. Вы знаете это, я знаю это, и каждый избиратель во Флориде знал это. На самом деле перед избирателями Флориды стоял не вопрос:

Кто должен получить голоса выборщиков штата Флорида – Гор, Буш или Нейдер?

а вопрос:

Кто должен получить голоса выборщиков штата Флорида – Гор или Буш?

Можно с уверенностью утверждать, что, по мнению практически каждого избирателя, отдавшего голос за Нейдера, Эл Гор был бы лучшим президентом, чем Джордж Буш[293].

Я не говорю о том, что исход этих выборов должен был быть другим. Однако правда и то, что голосование приводит порой к парадоксальным результатам, когда большинство не всегда побеждает, а посторонние альтернативы контролируют исход выборов. Клинтон получил от этого свою выгоду в 1992 году, младший Буш – в 2000 году, но математический принцип остается прежним: понять, «чего на самом деле хотят избиратели», очень трудно.

Однако выборы в Америке – не единственный способ. Поначалу это может показаться странным: какой еще выбор, кроме кандидата, набравшего самое большое количество голосов, может быть справедливым?

Интересно, как размышлял бы над этой проблемой математик? И действительно, был один математик, пытавшийся ее решить. Жан-Шарль де Борда, французский ученый XVIII столетия, известный своей работой в области баллистики. Выборы – это машина. Мне нравится представлять выборы в виде большой чугунной мясорубки. То, что поступает в мясорубку выборов на входе, – это предпочтения отдельных избирателей. Колбасообразная масса, которая появляется на выходе, после того как вы повернете ручку, – это то, что мы называем волей народа.

Эл Гор проиграл во Флориде – что именно беспокоит нас в этой ситуации? То, что на самом деле больше избирателей предпочли Гора Бушу, а не наоборот. Почему наша избирательная система не знает об этом? Потому что у людей, голосовавших за Нейдера, не было возможности выразить свое предпочтение Гору перед Бушем. Другими словами, мы исключаем из рассмотрения важную информацию, относящуюся к делу.

Математик в этом случае сказал бы: «Нельзя не учитывать информацию, имеющую отношение к задаче, которую вы пытаетесь решить!»

У производителя колбас свой взгляд на вещи: «Коли беретесь делать фарш, сразу используйте всю корову!»

И оба согласились бы с тем, что вы должны найти способ принять во внимание всю совокупность предпочтений избирателей, а не только то, какой кандидат нравится им больше всех. Предположим, процедура голосования позволила бы избирателям штата Флорида составить список всех трех кандидатов в порядке их предпочтения. Результаты могли бы выглядеть примерно так[294]:

Первая группа представляет республиканцев; вторая – либеральных демократов; третья – консервативных демократов, для которых Нейдер – явный перебор.

Как использовать эту дополнительную информацию? Борда предложил простой и изящный метод, согласно которому каждый кандидат получает определенное количество очков в зависимости от его места в рейтинге. В частности, если есть три кандидата, 2 очка получает кандидат, получивший первое место, 1 очко – второе место и 0 очков – третье место. В нашем примере Буш получает 2 очка от 49 % голосов и еще 1 очко от 24 % голосов, что составляет:

2 ? 0,49 + 1 ? 0,24 = 1,22 очка.

Гор получает 2 очка от 49 % голосов и 1 очко от 51 % голосов – всего 1,49 очка. Нейдер получает 2 очка от 2 % голосов тех избирателей, которым он нравится больше всего, и еще одно очко от 25 % голосов либералов – что дает в результате 0,29 очка.

Таким образом, Гор занимает первое место, Буш второе, а Нейдер третье. Этот результат согласуется с тем фактом, что 51 % избирателей отдают предпочтение Гору перед Бушем, 98 % предпочитают Гора Нейдеру и 73 % предпочитают Буша Нейдеру. Все три большинства получают свое!

Но что если числа были бы немного другими? Предположим, вы перенесете 2 % голосов избирателей с варианта «Гор, Нейдер, Буш» на вариант «Буш, Гор, Нейдер». В таком случае результат подсчета голосов был бы таким:

Теперь большинство обитателей штата Флорида симпатизируют Бушу больше, чем Гору. Более того, большинство обитателей штата считают Буша самым лучшим кандидатом. Однако по методу Борда Гор по-прежнему существенно опережает Буша, с перевесом 1,47 балла против 1,26 балла. Что выводит Гора на первое место? Присутствие «посторонней альтернативы» Ральфа Нейдера, того самого кандидата, который спутал Гору все карты во время выборов 2000 года. Присутствие Нейдера в избирательном бюллетене вытесняет Буша на третье место во многих вариантах, из-за чего он теряет очки. В то же время Гор никогда не попадает на последнее место, поскольку люди, которые не испытывают к нему симпатии, еще больше не любят Нейдера.

Это возвращает нас к слизевому грибу. Если вы помните, у слизевика нет мозга, который позволял бы ему координировать процесс принятия решений, а только тысячи ядер в составе плазмодия, толкающие его в том или ином направлении. При этом слизевик должен каким-то образом агрегировать имеющуюся информацию и выработать решение.

Если слизевик принимал бы решение, исходя только из количества пищи, он поставил бы вариант «5-свет» на первое место, вариант «3-темнота» на второе место и вариант «1-темнота» на третье место. Если основным критерием принятия решений была бы темнота, тогда на первом месте был бы вариант «3-темнота» в связке с вариантом «1-темнота», а на третьем месте был бы вариант «5-свет».

Эти рейтинги несовместимы. Так как же слизевик принимает решение отдать предпочтение варианту «3-темнота»? По мнению Лэтти и Бикман, чтобы сделать выбор, слизевик использует некую форму демократии, опираясь на нечто, отсылающее нас к методу Борда. Предположим, 50 % ядер слизевика интересует пища, и 50 % беспокоится по поводу света. В таком случае таблица подсчета баллов по методу Борда выглядела бы так[295]:

Вариант «5-свет» получает 2 очка от половины слизевиков, которых интересует пища, и 0 очков от тех слизевиков, которых беспокоит свет, то есть итоговый результат составляет:

2 ? (0,5) + 0 ? (0,5) = 1

Если на первом месте рейтинга находятся два варианта, они оба получают по 1,5 очка; таким образом, вариант «3-темнота» получает 1,5 очка от половины слизевиков и 1 очко от другой половины, что дает в сумме 1,25. А самый незначительный вариант «1-темнота» не получает ничего от половины предпочитающих пищу слизевиков, которые ставят этот вариант на последнее место, и 1,5 очка от половины ненавидящих свет слизевиков, которые привязывают этот вариант к первому месту, что дает 0,75 очка. В итоге вариант «3-темнота» занимает первое место, вариант «5-свет» – второе и вариант «1-темнота» – третье, что полностью соответствует экспериментальному результату.

Допустим, что варианта «1-темнота» вообще не было. В таком случае половина слизевиков присвоили бы варианту «5-свет» более высокий рейтинг, чем варианту «3-темнота», а другая половина слизевиков оценили бы вариант «3-темнота» выше варианта «5-свет». В итоге получается равное количество баллов, что и произошло в ходе первого эксперимента, когда слизевик делал выбор между кучкой овсяных хлопьев весом 3 грамма в темноте и кучкой хлопьев весом 5 граммов на свету.

Иными словами, маленькая неосвещенная кучка хлопьев нравится слизевику примерно в такой же степени, что и большая, ярко освещенная кучка хлопьев. Однако, если добавить еще меньшую темную кучку хлопьев, маленькая темная кучка в сравнении с ней выглядит лучше, причем настолько лучше, что слизевик почти всегда отдает ей предпочтение перед большой, ярко освещенной кучкой.

Этот феномен обозначается термином «эффект асимметричного доминирования», и слизевики – не единственные существа, которые ему подвержены. Биологи обнаружили, что сойки, медоносные пчелы и колибри придерживаются такого же на первый взгляд иррационального образа действий{261}.

Что говорить о людях! Здесь необходимо заменить овсяные хлопья любовными партнерами. Психологи Константин Седикидес, Дэн Ариэли и Нильс Ольсен поставили перед испытуемыми из числа студентов младших курсов такую задачу{262}:

Вы получите описание нескольких гипотетических человек. Представьте себе, что эти люди – ваши потенциальные любовные партнеры. Вам необходимо выбрать одного человека, которого вы пригласили бы на свидание. При этом вы должны исходить из того, что все потенциальные партнеры: 1) студенты Университета Северной Каролины (или Университета Дьюка); 2) имеют ту же расовую или этническую принадлежность, что и вы; 3) примерно того же возраста, что и вы. Описание этих потенциальных любовных партнеров будет содержать несколько характеристик с указанием соответствующего количества процентных пунктов. Эти процентные пункты отображают относительную позицию потенциального партнера по соответствующему качеству или характеристике в сравнении со студентами Университета Северной Каролины (или Университета Дьюка) того же пола, расы и возраста, что и потенциальный партнер.

Адам попадает в 81-й перцентиль по привлекательности, 51-й перцентиль по надежности и 65-й перцентиль по интеллекту, тогда как Билл находится в 61-м перцентиле по привлекательности, 51-м перцентиле по надежности и 87-м перцентиле по интеллекту. Студенткам университета, как и слизевикам в предыдущем примере, предстояло сделать трудный выбор. И, подобно слизевикам, они разделились на две половины, отдавшие предпочтение каждому из потенциальных партнеров.

Однако ситуация изменилась, когда в число потенциальных партнеров был включен Крис. Он находится в 81-м перцентиле по привлекательности, 51-м перцентиле по надежности (точно так же, как Адам) и только в 54-м перцентиле по интеллекту. Крис был посторонней альтернативой, тем вариантом, который был явно хуже предыдущих двух вариантов. Вы можете догадаться, что произошло дальше. На фоне немного менее умной версии Адама настоящий Адам выглядел лучше, поэтому, выбирая потенциального партнера из трех вариантов (Адам, Билл и Крис), почти две трети девушек выбрали Адама.

Следовательно, если вы одинокий молодой человек, который ищет возлюбленную, и вам нужно решить, кого из друзей взять с собой на вечеринку, выберите того, кто во многом похож на вас, но в чем-то немного вам уступает.

Что лежит в основе такой иррациональности? Мы уже видели, что очевидная иррациональность общественного мнения может проистекать из коллективного поведения в высшей степени рациональных отдельных людей. Однако отдельные люди, как нам известно по опыту, не являются абсолютно рациональными. Пример со слизевиком позволяет предположить, что парадоксальности и непоследовательности нашего повседневного поведения можно дать более системное объяснение. Возможно, отдельные люди кажутся иррациональными по той причине, что на самом деле они не являются самостоятельными индивидами! Каждый из нас представляет собой маленькое государство, которое делает все возможное, чтобы урегулировать разногласия и добиться компромисса между пререкающимися друг с другом голосами, которые нами управляют. Результаты не всегда имеют смысл, но каким-то образом они порой позволяют нам, подобно слизевикам, двигаться дальше, не совершая ужасных ошибок. Демократия – это далеко не лучшая система, но она, пожалуй, работает.