Чрезмерная эффективность классической геометрии
Аполлоний и древнегреческие геометры представляли себе эллипсы как конические сечения – поверхности, полученные пересечением конуса плоскостью. Кеплер показал (хотя астрономическому сообществу понадобилось несколько десятилетий, чтобы понять это), что планеты движутся по эллиптическим орбитам, а не по круговым, как считалось ранее. Теперь та же кривая возникает в качестве естественной фигуры, к которой заключены данные о росте родителей и детей. Чем это можно объяснить? Причина не в том, что существует некий невидимый конус, управляющий наследственностью, который в случае отсечения под правильным углом дает эллипсы Гальтона. Причина также не в том, что некая форма генетического притяжения приводит к появлению эллиптических фигур на диаграммах Гальтона посредством ньютоновских законов механики.
Причина заключается в одном фундаментальном свойстве математики – в каком-то смысле именно это свойство сделало математику столь полезной для естествоиспытателей. В математике существует множество сложных объектов, но совсем немного простых. Следовательно, если у вас есть задача, решение которой допускает простое математическое описание, значит, существует только несколько вариантов такого решения. Таким образом, самые простые математические объекты широко распространены и выполняют множество обязанностей в качестве решений научных задач разных типов.
Самые простые линии – прямые. Очевидно, что прямые линии присутствуют в природе повсюду, от граней кристаллов до траектории движущихся тел при отсутствии силы, которая на них воздействует. Следующий тип простейших линий – линии, представленные квадратными уравнениями[263], то есть уравнениями, в которых друг на друга умножаются не более двух переменных. Таким образом, возведение переменной в квадрат, или умножение двух разных переменных, разрешено, тогда как возведение переменной в куб, или умножение одной переменной на квадрат другой, строго запрещено. Линии этой категории, в том числе эллипсы, из уважения к истории называют коническими сечениями, однако более прогрессивные специалисты по алгебраической геометрии называют их квадриками[264], или кривыми второго порядка. Существует множество квадратных уравнений, причем любое из них имеет такой вид:
A x? + B xy + C y? + D x + E y + F = 0
для некоторых значений постоянных A, B, C, D, E и F. (Читатели, у которых возникнет такое желание, могут удостовериться, что с учетом нашего требования о возможности умножения двух, но не трех переменных другие типы алгебраических выражений недопустимы.) Создается впечатление, что это обеспечивает много вариантов – по сути, бесконечно много! Однако эти квадрики, оказывается, подразделяются на три основные категории: эллипсы, параболы и гиперболы[265]. Вот как они выглядят:
Мы встречаем три кривые снова и снова в качестве решения научных задач, и это не только орбиты планет, но и оптимальная конструкция изогнутых зеркал, траектория движения брошенного тела, форма радуги.
Эти кривые можно встретить даже за пределами науки. Мой коллега Майкл Харрис, известный специалист по теории чисел из Института математики Жюсье в Париже, выдвинул предположение, что три главных романа Томаса Пинчона связаны с тремя коническими сечениями: в романе Gravity’s Rainbow («Радуга земного тяготения»)[266] идет речь о параболах (все эти ракеты, которые взлетают и падают!); в романе Mason & Dixon («Мэйсон и Диксон») – об эллипсах; в романе Against the Day («На день погребения Моего»)[267] – о гиперболах{224}. Эта теория кажется мне такой же хорошей, как и все остальные об организации этих романов, которые я встречал. Безусловно, Пинчону, изучавшему в свое время физику и любившему упоминать в своих романах о ленте Мебиуса и о кватернионах, хорошо известно, что такое конические сечения.
Гальтон обратил внимание на то, что кривые, которые он нарисовал от руки, похожи на эллипсы, но он не был настолько большим знатоком геометрии, чтобы быть уверенным в том, что это именно та кривая, а не любая другая более или менее овальная фигура. Не потакает ли он своему стремлению сформулировать элегантную и универсальную теорию воздействия на восприятие собранных данных? Он был бы не первым и не последним ученым, совершившим такую ошибку. Гальтон, будучи неизменно осмотрительным, обратился за советом к математику из Кембриджского университета Джеймсу Дугласу Гамильтону Диксону. Он пошел даже на то, чтобы скрыть происхождение данных, представив все как задачу из области физики, чтобы исключить предвзятое мнение Диксона в отношении того или иного конкретного вывода. К великому удовольствию Гальтона, Диксон быстро подтвердил тот факт, что эллипс – это не просто кривая, подразумеваемая собранными данными, а кривая, присутствия которой требует теория. Гальтон писал:
Возможно, эта задача была не такой уж трудной для опытного математика, но я никогда не встречал такого теплого чувства доверия и уважения по отношению к независимости и размаху математического анализа, как в тот момент, когда пришел его ответ, посредством чистых математических рассуждений подтверждающий все многообразие моих кропотливых статистических выводов с гораздо большей тщательностью, чем я смел надеяться, поскольку данные были несколько грубыми и мне пришлось крайне осторожно сглаживать их{225}.