К разделу 14

75. Сколько симплектически неэквивалентных плоскостей размерности k имеет симплектическое пространство большей размерности? Докажите, что их число равно целой части k/2.

76. Полным флагом в линейном пространстве называется набор из последовательно вложенных друг в друга подпространств всех размерностей. Сколько симплектически неэквивалентных полных флагов имеет симплектическое пространство размерности 2n? Докажите, что их число равно (2n — 1)!! = 1 · 3 · 5 · ... ·(2n — 1).

77. В пространстве однородных многочленов нечетной степени от двух переменных имеется симплектическая структура, инвариантная относительно естественного действия группы сохраняющих площади линейных преобразований плоскости; эта структура единственна (с точностью до ненулевого множителя). Найдите ее явное выражение через коэффициенты многочленов.

78. В каждом слое лагранжева расслоения имеется естественная локальная аффинная структура (избранный класс систем координат, в которых лагранжевы эквивалентности задают аффинные преобразования).

79. Докажите, что график преобразования Лежандра гладкой функции является фронтом (образом лежандрова отображения гладкого лежандрова многообразия),

80. Основания перпендикуляров, опущенных из начала координат на касательные плоскости не содержащей начала координат поверхности в евклидовом пространстве, образуют поверхность, называемую производной (исходная же поверхность называется первообразной для своей производной). Докажите, что особенности производных гладких поверхностей — лежандровы (т. е. что производная диффеоморфна фронту лежандрова отображения).

81 (продолжение). Докажите, что особенности первообразных гладких поверхностей — лежандровы. Нарисуйте первообразные эллипса на плоскости и эллипсоида в трехмерном пространстве.

82. Фронтом какого лежандрова отображения является эквидистанта гладкой поверхности в евклидовом пространстве?

83. Фронтом какого лежандрова отображения является график (многозначной) функции расстояния до данной гладкой поверхности в евклидовом пространстве?

84. Докажите, что в слоях лежандрова расслоения имеются естественные структуры локально проективных пространств (так что лежандровы эквивалентности, т. е. диффеоморфизмы, сохраняющие контактную структуру и структуру лежандрова расслоения, задают на слоях проективные преобразования).