К разделу 9
54. Определить плотность пылевидной тяготеющей одномерной среды на замкнутой кривой в фазовой плоскости так, чтобы при движении частиц эта кривая и эта плотность сохранялись (указание: кривая q2 + р2 + | р |3 = 4/27).
55. Доказать, что при пролегании одномерного потока пылевидной среды, определяющего первоначально гладкое поле скоростей, над скоплением с коренной особенностью плотности (а (х, t) х-1/2 ?(х) + b (x, t), где а и b — заданные гладкие функции, а ? 0, ? (х) = 0 при х < 0, 1 при х > 0) поле скоростей приобретает слабую особенность вида с (x, t) х3/2 ? (х); гладкой заменой переменных можно свести с к единице.
56. Рассмотрим N частиц в единичном кубе и окружим каждую из них шаром радиуса r. При каком минимальном r эти шары образуют связную цепь диаметра единица? Покажите, что радиус убывает как C/N для распределений частиц вдоль линий, как C/N1/2 для распределений вдоль поверхностей, как C/N3/2 для пространственных распределений (вычисляемая таким способом "размерность" крупномасштабного распределения галактик оказывается лежащей между 1 и 2).