Бесконечный ноль
Моя теория тверда, как скала; каждая стрела, направленная в нее, быстро вернется к стрелку. Откуда я это знаю? Я это изучал… Я проследил корни, так сказать, до первой непогрешимой причины всех созданных вещей.
Георг Кантор
Бесконечность больше не была тайной, она стала обыкновенным числом. Это был наколотый на булавку образец, приготовленный для изучения, и математики быстро взялись за анализ. Однако в самых глубинах бесконечности, угнездившись в огромном континууме чисел, все время появлялся ноль. Самое поразительное то, что сама бесконечность может быть нолем.
В прежние времена, до того как Риман увидел, что комплексная плоскость — на самом деле сфера, функции типа 1 / x ставили математиков в тупик. Когда x стремится к нолю, 1 / x делается все больше и больше и в конце концов просто взрывается и стремится к бесконечности. Риман сделал совершенно приемлемым приближение к бесконечности, поскольку бесконечность — это всего лишь точка на сфере, такая же, как любая другая точка; она больше не является чем-то, чего следует бояться. Математики начали анализировать и классифицировать точки, в которых функции взрываются: сингулярности, или особые точки.
Для кривой 1 / x сингулярностью является точка x = 0. Это очень простой вид сингулярности, которую математики называют полюсом. Существуют и другие виды сингулярности, например, для кривой sin (1 / x) точка x = 0 — существенно особая точка. Существенно особые точки — странные твари, рядом с сингулярностью такого сорта кривая делается абсолютно безумной. Она колеблется вверх и вниз все быстрее и быстрее по мере приближения к сингулярности, мечется от положительных значений к отрицательным и обратно. Даже в самой малой окрестности сингулярности кривая принимает почти все вообразимые значения снова и снова. Однако как бы странно эти функции не вели себя вблизи сингулярности, они больше не являлись тайной для математиков, которые учились вскрывать бесконечность.
Главным анатомом бесконечности был Георг Кантор. Хотя он в 1845 году родился в России, большую часть жизни Кантор провел в Германии. И именно в Германии — стране Гаусса и Римана — были открыты секреты бесконечности. К несчастью, Германия была также родиной Леопольда Кронекера, математика, который загнал Кантора в психиатрическую больницу.
В основе конфликта Кантора с Кронекером лежало представление о бесконечности, представление, которое может быть проиллюстрировано простой загадкой. Представьте себе большой стадион, полный людей. Вам нужно узнать, больше ли на стадионе мест, чем зрителей, или их число одинаково. Вы могли бы пересчитать людей и узнать, сколько имеется мест, и потом сравнить количества, однако это заняло бы много времени. Есть гораздо более разумный способ. Просто попросите всех присутствующих сесть. Если останутся незанятые места, значит, людей меньше, чем мест. Если какое-то количество людей останется стоять, значит, мест слишком мало. Если все места окажутся заняты и никто не останется стоять, то число зрителей и мест одинаково.
Кантор обобщил этот прием. Он сказал, что два числовых множества чисел имеют одинаковую мощность, если один набор «садится» на другой набор — по одному числу на одно число другого набора — и не остается излишка. Например, рассмотрим набор {1, 2, 3}; он имеет ту же мощность, что и {2, 4, 6}, потому что мы можем создать точный паттерн «рассадки»: все числа «сидят», и все «места» заняты.
Однако это не так с набором {2, 4, 6, 8}, потому что 8 оказывается пустым «местом»:
Дело приобретает особенно интересный характер, когда у вас имеется бесконечное множество. Рассмотрим множество всех чисел {0, 1, 2, 3, 4, 5…}. Очевидно, что оно равномощно самому себе: можно каждое число просто «посадить» на самого себя.
Здесь нет никакой уловки. Каждое множество, очевидно, равно (и равномощно) самому себе. Но что случится, если мы начнем убирать числа из набора? Например, что будет, если мы уберем ноль? Как ни странно, устранение ноля совсем не изменит размер мощности множества. Несколько изменив «рассадку», мы можем обеспечить, чтобы у всех было место и все места были заняты.
Набор остался той же мощности, несмотря на то, что мы из него кое-что убрали. На самом деле из набора целых чисел мы можем убрать бесконечное количество элементов — можем исключить, например, нечетные числа — мощность множества останется неизменной. Все по-прежнему имеют места, и каждое место занято.
Это есть определение бесконечного: это нечто, что может оставаться той же мощности, даже если вы из него что-то вычтете.
Четные числа, нечетные числа, целые числа — все эти множества имеют одинаковую мощность, размер, которую Кантор обозначил как
Однако, как было известно Пифагору, рациональные числа вовсе не заполняют все под солнцем. Рациональные и иррациональные числа в совокупности составляют так называемые вещественные числа. Кантор открыл, что множество вещественных чисел много больше множества рациональных чисел. Его доказательство было очень простым.
Представьте себе, что у вас имеется идеальный план «рассадки» вещественных чисел: каждое вещественное число имеет место, и каждое место занято. Это означает, что мы можем сделать список мест с указанием номера места одновременно с тем вещественным числом, которое на нем сидит. Например, наш список мог бы выглядеть примерно так:
Место . . . . . . . . . . Вещественное число
1 . . . . . . . . . . . . . . 3125123…
2 . . . . . . . . . . . . . . 7843133…
3 . . . . . . . . . . . . . . 9999999…
4 . . . . . . . . . . . . . . 6261000…
5 . . . . . . . . . . . . . . 3671123…
и т.д. . . . . . . . . . . .и т.д.
Уловка удалась, когда Кантор создал вещественное число, которого не было в списке.
Посмотрите на первую цифру первого числа в списке. В нашем примере это 3. Если бы наше новое число было равно первому числу в списке, его первой цифрой тоже было бы 3, но мы с легкостью можем воспрепятствовать этому. Давайте просто скажем, что наше новое число начинается с цифры 2. Поскольку первое число в списке начинается с 3, а новое число — с 2, мы знаем, что эти числа различны. (В строгом смысле слова это не так. Число 3,00000… равно числу 2,99999…, поскольку существует два способа записи многих рациональных чисел. Однако это мелочь, которую легко преодолеть. Для ясности мы проигнорируем это исключение.)
Теперь перейдем ко второму вещественному числу. Как мы можем быть уверенными в том, что наше новое число отличается от второго числа из списка? Что ж, мы уже определили первую цифру нашего нового числа, так что не можем повторить в точности ту же уловку, но можем сделать кое-что не хуже. Второе число нашего списка имеет вторую цифру 8. Если наше новое число имеет вторую цифру 7, мы можем убедиться, что наше новое число не совпадает со вторым числом из списка, поскольку их вторые цифры отличаются друг от друга. Значит, они не одинаковы. Мы продолжаем делать то же самое, двигаясь по списку: рассматриваем третью цифру третьего числа и меняем ее, рассматриваем четвертую цифру четвертого числа и меняем ее — и так далее.
Это дает новое число 27800…, которое отличается от первого числа (их первые цифры не совпадают), от второго числа (их вторые цифры не совпадают), от третьего, четвертого, от пятого и т.д.
Перемещаясь подобным образом по диагонали, мы создаем новое число. Этот процесс обеспечивает отличие нового числа от всех чисел в списке. Оно отлично от всех чисел в списке, оно не может входить в список, но мы уже предположили, что наш список содержит все вещественные числа. В конце концов, это был полный список рассаженных чисел. Имеет место противоречие. Безупречный список «рассадки» существовать не может.
Вещественные числа составляют бо?льшую бесконечность, чем числа рациональные. Термин для бесконечности такого типа —
К несчастью для Кантора, не все разделяли его видение Бога. Леопольд Кронекер был видным профессором Берлинского университета и одним из учителей Кантора. Кронекер верил в то, что Бог никогда не допустил бы существования такой гадости, как иррациональные числа и тем более бесконечно увеличивающегося числа бесконечностей, образующих нечто вроде матрешки. Целые числа символизировали чистоту Бога, в то время как иррациональные числа и другие странные разновидности чисел представляли собой скверну — измышления несовершенного человеческого ума. Худшими из них были Канторовы трансфинитные числа.
Возмущенный взглядами Кантора, Кронекер обрушил на него ядовитую критику и очень затруднил публикацию его работ. Когда Кантор в 1883 году претендовал на должность в Берлинском университете, ему было отказано. Пришлось удовольствоваться должностью профессора гораздо менее престижного университета в Галле. Вероятно, виноват в этом был влиятельный Кронекер. В том же году Кантор написал опровержение нападок Кронекера. Затем в 1884 году Кантор пережил первый нервный срыв, приведший к депрессии.
Слабым утешением для него послужило бы то, что его работы стали основой целой новой области математики: теории множеств. Используя теорию множеств, математики открыли не только числа, о которых мы ничего не знаем; они разработали неслыханные до того понятия — бесконечные бесконечности, которые можно складывать, вычитать, умножать и делить, как обычные числа. Кантор открыл целую новую вселенную чисел. Немецкий математик Давид Гильберт сказал о нем: «Никто не сможет изгнать нас из рая, созданного для нас Кантором». Однако для Кантора признание опоздало: весь остаток жизни он лечился в психиатрических больницах и в 1918 году умер в одной из них.
В битве между Кронекером и Кантором Кантор в конце концов победил. Его теория показала, что дорогие Кронекеру целые числа — и даже числа рациональные — это ничто. Они — бесконечный ноль.
Рациональных чисел бесконечно много, и между любыми двумя числами по вашему выбору, как бы близко друг к другу они ни располагались, все еще находится бесконечное множество рациональных чисел. Они повсюду. Однако канторовская иерархия бесконечностей говорила о другом: она показывала, как мало места рациональные числа занимают на числовой оси.
Для такого сложного подсчета требуется остроумная уловка. Измерить объекты неправильной формы очень трудно. Например, представьте себе, что у вас пятно на деревянном полу. Какую площадь занимает пятно? Это совсем не очевидно. Если пятно имеет форму круга, квадрата или треугольника, площадь легко вычислить: просто возьмите рулетку и измерьте радиус или высоту и основание. Однако не существует формулы для вычисления площади пятна в форме амебы. Впрочем, существует другой способ.
Возьмите прямоугольный коврик и положите его поверх пятна. Если коврик покрывает пятно полностью, значит, пятно меньше коврика; если площадь коврика — квадратный фут, то площадь пятна меньше квадратного фута.
При использовании ковриков меньшего размера аппроксимация делается лучше и лучше. Предположим, что пятно покрывается пятью ковриками размером в одну восьмую квадратного фута. Значит, площадь пятна не больше пяти восьмых квадратного фута, что меньше нашей оценки при помощи коврика в один квадратный фут. По мере того как вы берете все меньшие и меньшие коврики, покрытие делается все лучше и лучше, и их общая площадь все больше приближается к истинному размеру пятна. На самом деле вы можете определить площадь пятна как предел площади ковриков, когда площадь каждого из них стремится к нолю (рис. 43).
Рис. 43. Покрытие пятна ковриками
Проделаем то же самое с рациональными числами, но на этот раз наши коврики — это наборы чисел. Например, число 2,5 «покрывается» ковриком, который включает, скажем, все числа между 2 и 3: это коврик размера 1. Использование такого рода коврика для покрытия рациональных чисел имеет некоторые весьма странные последствия, как показал Кантор с помощью своей карты «рассадки». Карта «рассадки» охватывает все рациональные числа — соотносит каждое из них с его «местом», так что их можно пересчитать одно за другим по порядку, основываясь на номере их «места». Возьмите первое попавшееся рациональное число и поместите его на числовую ось. Накройте его ковриком размера 1. Этим ковриком будет накрыто множество других чисел, но об этом мы можем не беспокоиться. Пока накрыто наше первое число, все в порядке.
Теперь возьмем второе число. Накроем его ковриком размера 1/2. Возьмем третье число и накроем его ковриком размера 1/4 и т. д. Продолжая процесс до бесконечности, поскольку каждое рациональное число присутствует на карте «рассадки», получим, что каждое рациональное число покрыто ковриком. Какова же суммарная площадь ковриков? Это наша старая приятельница, ахиллесова сумма. Складывая площади ковриков, мы получим сумму 1 + 1/2 + 1/4+ 1/8 + … + 1/2n, которая стремится к 2, когда n стремится к бесконечности. Таким образом, мы можем накрыть бесконечное множество рациональных чисел на числовой оси набором ковриков, общая площадь которых равна 2. Это означает, что все рациональные числа оси можно загнать на отрезок длиной меньше двух единиц пространства.
Как мы поступали в случае пятна, сделаем размеры ковриков еще меньше, чтобы получить лучшую аппроксимацию. Если вместо того, чтобы начинать с коврика размера 1, начать с коврика размером в 1/2 , то общая сумма площадей окажется равной 1. Значит, рациональные числа в сумме занимают меньше одной единицы пространства. Если мы начнем с первого коврика размера 1/1000 , все коврики займут меньше 1/500 единицы пространства, и все рациональные числа уместятся меньше чем на 1/500 единицы пространства. Если мы начнем с коврика размером в один атом, мы сможем накрыть все рациональные числа на числовой оси ковриками, которые в сумме имеют площадь меньшую, чем атом. Однако даже такие крохотные коврики, что могут все вместе уместиться в одном атоме, накроют все рациональные числа (рис. 44).
Рис. 44. Покрытие рациональных чисел
Мы можем брать какие угодно малые коврики, мы можем накрыть все рациональные числа ковриками, в сумме имеющими площадь в половину атома, в нейтрон или в кварк — столь малыми, какие только можем вообразить.
Так каков же тогда размер совокупности рациональных чисел? Мы определили размер как предел — сумму площадей ковриков, размер каждой из которых стремится к нолю.
Однако одновременно мы видели, что по мере уменьшения ковриков сумма покрывающих площадей делается все меньше и меньше, меньше атома, кварка или миллионной доли кварка — и при этом покрывает все рациональные числа. Каков предел величины, без остановки делающейся все меньше и меньше? Ноль.
Каков размер совокупности рациональных чисел? Они не занимают никакого пространства. Эту концепцию трудно воспринять, однако она истинна.
Несмотря на то, что рациональные числа находятся повсюду на числовой оси, они совсем не занимают места. Если бы мы кинули дротик в числовую ось, он никогда не попал бы в рациональное число. Никогда. И хотя рациональные числа не занимают места, этого нельзя сказать об иррациональных, потому что для них нельзя составить карты «рассадки» и пересчитать их по одному: всегда останутся неохваченные. Кронекер ненавидел иррациональные числа, но они занимают все место на числовой оси.
Бесконечность рациональных чисел — всего лишь ноль.