Грэхэм Д. Фитч Популярное объяснение четвертого измерения

We use cookies. Read the Privacy and Cookie Policy

Представить себе наглядно четвертое измерение невозможно. Тем не менее четвертое измерение — не абсурд, а полезное математическое понятие, лежащее в основе развитой непротиворечивой геометрии. Чтобы получить хотя бы частичное представление о том, что такое четвертое измерение, и хотя бы в общих чертах представить себе его, необходимо воспользоваться аналогией с пространством меньшего числа измерений.

Мы говорим, что множество одно-, двух- или трехмерно в зависимости от того, сколько чисел (одно, два или три) необходимо задать для того, чтобы полностью определить любой из элементов этого множества. Если пространство рассматривать как множество точек, то прямую можно назвать одномерным пространством, потому что положение точки на прямой полностью определяется заданием одного числа: расстояния от некоторой! фиксированной до рассматриваемой точки. Аналогично; плоскость является двумерным пространством, а множество точек, образующих пространство, в котором мы живем, трехмерно. Действительно, точное положение любой точки на Земле известно, коль скоро заданы ее широта, долгота и высота над уровнем моря. Если мы) обратимся к четырем переменным, каждая из которых может принимать независимо от других численные значения, то получим четырехмерное множество. Такое множество, если оно состоит из точек, образует четырехмерное пространство.

Если все точки нашего пространства (3-пространства) соединить с некоторой воображаемой точкой вне его, то множество точек, лежащих на проведенных прямых, образует 4-пространство (гиперпространство). Точка, двигаясь, порождает линию. Линия, двигаясь в поперечном направлении, порождает поверхность. Поверхность, двигаясь в сторону от себя, порождает объемное тело. Тело, двигаясь из нашего пространства, порождает гипертело, или конечную часть гиперпространства. Допустимо рассуждать и несколько, иначе. Можно считать, что гиперпространство порождается всем нашим пространством, когда последнее Движется параллельно самому себе в некотором не содержащемся в нем направлении. Наше пространство в свою очередь можно считать порожденным аналогичным движением неограниченной плоскости, а плоскость — порожденной движением неограниченной прямой. Любое пространство можно рассматривать как границу между двумя частями пространства более высокой размерности. Любая неограниченная плоскость разделяет наше пространство на две равные бесконечные части. Точно так же каждое 3-пространство разделяет гиперпространство на две равные бесконечные области, а само 3-пространство образует границу между ними, обладающую бесконечно малой толщиной в четвертом измерении.

Две плоские фигуры (например, два треугольника), если они лежат в одной плоскости, могут частично перекрываться, но пересекаться они будут лишь в том случае, если лежат в различных плоскостях. Аналогично два объемных тела (например, два куба), если они лежат в одном и том же 3-пространстве, могут частично перекрываться, но пересекаться они будут лишь в том случае, если лежат в различных 3-пространствах. В гиперпространстве мы встречаемся со следующими возможными случаями пересечения. Гипертело и 3-пространство пересекаются, образуя трехмерное тело. Два 3-пространства пересекаются по некоторой плоскости, три 3-пространства пересекаются по прямой, четыре 3-пространства пересекаются в одной точке, 3-пространство и плоскость пересекаются по прямой, 3-пространство и прямая пересекаются в одной точке и две плоскости пересекаются в одной точке. Если пересечение находится в бесконечности, то говорят, что такие элементы параллельны. Если два 3-пространства параллельны, то все фигуры или тела в одном 3-пространстве расположены на равных расстояниях от другого 3-пространства. В случае плоскостей существуют два случая параллельности, и параллельные плоскости либо абсолютно, либо неабсолютно параллельны в зависимости от того, расположены, ли они в одном и том же или в различных 3-пространствах (или в зависимости от того, как они пересекаются в бесконечности: по прямой или лишь в точке).

На плоскости к данной прямой в данной точке можно восставить лишь один перпендикуляр. В 3-пространстве можно провести бесконечно много перпендикуляров, образующих плоскость, перпендикулярную данной прямой, а в гиперпространстве бесконечное множество плоскостей, перпендикулярных данной прямой, образуют 3-пространство, перпендикулярное данной прямой. В четырехмерном пространстве 3-пространство может также быть перпендикулярным плоскости или другому 3-пространству. Говоря о перпендикулярных плоскостях в четырехмерном пространстве, следует различать два случая: неабсолютно перпендикулярные и абсолютно перпендикулярные плоскости. Отличаются они тем, что неабсолютно перпендикулярные плоскости лежат в одном и том же 3-пространстве, а абсолютно перпендикулярные плоскости не принадлежат одному 3-пространству. В последнем случае каждая прямая, лежащая в любой из двух плоскостей, перпендикулярна каждой прямой, лежащей в другой плоскости.

Положение точки на плоскости можно задать, указав, на каком расстоянии она находится от каждой из двух перпендикулярных прямых. Положение точки в нашем пространстве мы определим, если будет известно, на каком расстоянии она находится от каждой из трех взаимно перпендикулярных плоскостей, а положение точки в гиперпространстве будет определено, если мы зададим расстояния от этой точки до каждого из четырех взаимно перпендикулярных 3-пространств. В гиперпространстве эти расстояния мы будем измерять вдоль четырех взаимно перпендикулярных прямых, которые, если разбить их на пары, образуют шесть взаимно перпендикулярных плоскостей, а если выбрать из них всеми возможными способами тройки, определяют четыре взаимно перпендикулярных 3-пространства, о которых мы упомянули выше. В нашем пространстве плоскость определяется по крайней мере тремя точками. В гиперпространстве, для того чтобы определить 3-пространство, необходимы по крайней мере четыре точки. 3-пространство можно также определить при помощи двух непересекающихся прямых или при помощи плоскости и не принадлежащей ей точки.

Так же как части нашего пространства ограничены поверхностями, плоскими или искривленными, части гиперпространства ограничены гиперповерхностями (трехмерными), то есть плоскими или искривленными 3-пространствами. Гиперпространство содержит не только бесконечно много плоских 3-пространств, аналогичных нашему пространству, но также бесконечно много искривленных 3-пространств, или гиперповерхностей различных типов. Например, гиперсфера представляет собой замкнутую гиперповерхность, все точки которой находятся на равном расстоянии от ее центра. Пять точек, не лежащих в одном и том же 3-пространстве, полностью определяют гиперсферу, подобно тому как четыре точки, не лежащие в одной и той же плоскости, полностью определяют сферу, а три точки, не лежащие на одной и той же прямой, определяют окружность. Все плоские сечения гиперсферы имеют форму окружностей, а все ее сечения 3-пространствами — форму сфер. Гиперсфера радиуса R, проходящая через наше пространство, казалась бы нам сферой, радиус которой постепенно увеличивается от 0 до R, а затем убывает от R до 0.

Рис. 1.

В то время как в нашем трехмерном пространстве существует лишь пять правильных многогранников (тел, ограниченных равными правильными многоугольниками), а именно: тетраэдр, куб, октаэдр, додекаэдр и икосаэдр, в гиперпространстве существует шесть правильных гипертел, ограниченных равными правильными многогранниками. Перечислим их: C5 (гипертело, ограниченное 5 тетраэдрами), C8 (гипертело, ограниченное 8 кубами), C16 (гипертело, ограниченное 16 тетраэдрами), C24 (гипертело, ограниченное 24 октаэдрами), C120 (гипертело, ограниченное 120 додекаэдрами), и C600 (гипертело, ограниченное 600 тетраэдрами). Математики подробно изучили все правильные гипертела и построили модели их проекций в наше пространство. Из всех правильных гипертел простейшим является C8 (или гиперкуб), потому что все его грани взаимно перпендикулярны, хотя их и больше, чем у C5. Гиперкуб служит стандартной единицей при измерении гиперобъема в 4-пространстве. Для получения гиперкуба достаточно переместить куб в направлении, перпендикулярном нашему пространству, на расстояние, равное длине ребра куба. На рис. 1 пунктиром показаны прямые, лежащие в гиперпространстве. ABCDEFGH означает символически начальное положение куба, а A'B'C'D'E'F'G'H' — его конечное положение. Направление AA' по предположению перпендикулярно нашему пространству. Проектируя ребра гиперкуба на наше пространство (имеется в виду, что мы не опускаем перпендикуляры из вершин гиперкуба на наше пространство, а проводим прямые из некоторой близко лежащей точки, проходящей через вершины гиперкуба), мы получаем проволочную модель, изображенную на рис. 2. Восемь граничных кубов представлены на этой модели в следующих проекциях: (1, 2, 3, 4, 5, 6, 7, 8), (5, 6, 7, 8, 9, 10, 11, 12), (9, 10, 11, 12, 13, 14, 15, 16), (13, 14, 15, 16, 1, 2, 3, 4), (1, 5, 9, 13, 2, 6, 10, 14), (2, 6, 10, 14, 3, 7, 11, 15), (3, 7, 11, 15, 4, 8, 12, 16), (4, 8, 12, 16, 5, 9, 13, 1). Форма гиперкуба обусловлена взаимным расположением восьми перечисленных кубов. Сам же гиперкуб содержит бесконечно много кубов так же, как трехмерный куб содержит бесконечно много квадратов. При движении куба, порождающем гиперкуб, вершины исходного куба порождают ребра, ребра исходного куба — грани (квадраты), а грани исходного куба — кубы, ограничивающие гиперкуб. Это позволяет подсчитать число элементов гиперкуба.

Рис. 2.

Каждая вершина гиперкуба принадлежит одновременно четырем взаимно перпендикулярным ребрам, шести граням и четырем кубам, каждое ребро — трем граням и трем кубам, а каждая грань — двум кубам. Таким образом, каждый куб имеет по одной грани, общей с шестью из семи других кубов. Следовательно, гиперкуб можно рассматривать как тело, состоящее из кубов, которые возникли при движении граней исходного куба, а те из кубов, которые лежат в нашем пространстве, параллельны породившим их граням.

Число вершин Число ребер Число граней (квадратов) Число кубов В начальном положении куба 8 — 8 16 Возникли при движении 12 8 12 32 В конечном положении куба 6 12 6 24 В гиперкубе 1 6 1 8

Вращение на плоскости может происходить лишь вокруг точки, в 3-пространстве возможно вращение вокруг прямой, а в гиперпространстве — вокруг осевой плоскости. Две симметричные плоские фигуры, например треугольники A и B (рис. 3), нельзя совместить никаким движением в плоскости, но, повернув один из них на 180° в третьем измерении, мы без труда совместим их.

Рис. 3.

Аналогично два симметричных объемных тела (грани которых равны, но расположены в ином порядке), такие, как полые пирамиды C и D (рис. 4), нельзя совместить никаким движением в нашем пространстве, но, повернув любую из них на 180° в гиперпространстве, мы без труда совместим их. Поворачиваемая пирамида исчезнет из нашего пространства и после поворота на 180° и возвращения в наше пространство ее легко будет «надеть» на другую пирамиду. В нашем пространстве два вращательных движения всегда можно заменить одним результирующим движением, аналогичным исходным, но отличающимся от них лишь положением оси вращения. В гиперпространстве в общем случае построить результирующее вращательное движение для двух вращений не удается. Следовательно, в гиперпространстве существует два различных типа вращательных движений, и тело, совершающее два вращательных движения, находится в совершенно ином состоянии, чем тело, участвующее лишь в одном вращательном движении. Если тело совершает лишь одно вращательное движение, то целая плоскость в нем остается неподвижной. Если тело совершает двойное вращательное движение, то ни одна его часть не остается неподвижной, за исключением точки, принадлежащей двум плоскостям вращения. Если оба поворота одинаковы, то каждая точка в теле, за исключением неподвижной точки, описывает окружность.

Рис. 4.

Движение в гиперпространстве отличается большей свободой, чем в нашем пространстве. В нашем пространстве твердое тело обладает шестью степенями свободы, а именно тремя сдвигами вдоль оси и тремя поворотами вокруг оси. Закрепив неподвижно три точки твердого тела, мы лишим его способности двигаться вообще. В гиперпространстве твердое тело с тремя неподвижно закрепленными точками по-прежнему сохраняет способность вращаться вокруг плоскости, проходящей через эти точки. Твердое тело в гиперпространстве обладает десятью степенями свободы, а именно четырьмя сдвигами вдоль четырех осей и шестью поворотами вокруг шести плоскостей. Чтобы лишить твердое тело способности двигаться в гиперпространстве, необходимо закрепить четыре его точки.

Рис. 5.

В гиперпространстве гибкую сферу можно, не растягивая и не разрывая, вывернуть наизнанку. Два звена цепи в четырехмерном пространстве можно разъять, не распиливая ни одно из них. Все наши узлы в четырехмерном пространстве были бы совершенно бесполезны. Например, узел, изображенный на рис. 5, в четырехмерном пространстве можно было бы развязать, оставляя при этом концы веревки по-прежнему прикрепленными к стенке. В нашем пространстве точка может войти внутрь окружности и выйти из нее, не пересекая при этом саму окружность. В гиперпространстве тело могло бы войти внутрь сферы (или любой другой замкнутой поверхности) и выйти из нее, не пересекая при этом поверхности сферы. Короче говоря, все наше пространство, в том числе и внутренность самых плотных тел, открыто наблюдению и более грубому вмешательству со стороны четвертого измерения, незримо простирающегося в невидимом направлении из каждой точки пространства.

Для чего же понадобилось вводить понятие гиперпространства? Услышав такой вопрос, мы могли бы ответить, что оно позволяет глубже понять геометрию. Например, окружность, рассматриваемая лишь как одномерное множество точек, обладает весьма немногими свойствами, в то время как у окружности на плоскости имеется центр, радиус, касательные и т. д., а окружность в 3-пространстве обнаруживает многочисленные геометрические связи со сферой, конусом и т. д. Аналогичным образом возрастает число свойств любой заданной кривой или поверхности при рассмотрении их в гиперпространстве. Кроме того, в 3-пространстве существуют некоторые одномерные множества (например, винтовая линия), не известные в пространстве двух измерений. В гиперпространстве возможны кривые и поверхности, с которыми нам не приходилось сталкиваться в нашем пространстве. Пространство меньших размерностей содержится в пространстве высших размерностей (если пространства искривлены, то размерности не обязательно должны отличаться на единицу). И так же как понимание планиметрии существенно расширяется при рассмотрении плоских фигур в 3-пространстве, так и многие вопросы стереометрии получают неожиданное освещение при рассмотрении их с точки зрения гиперпространства. Области математики, ранее недоступные геометрии, ныне, с появлением геометрии четырех измерений, обрели свою геометрическую интерпретацию. Наконец понятие четвертого измерения знаменует разрыв между геометрическим пространством и реальным пространством, которое утрачивает свой обязательный характер, и расширяет наш кругозор во многих других отношениях.

Больше книг — больше знаний!

Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ