Равновесие Нэша в смешанных стратегиях

We use cookies. Read the Privacy and Cookie Policy

До сих пор мы рассматривали игры с равновесием Нэша в чистых стратегиях. Это такое равновесие, при котором игроки уверенно делают определенный выбор. Но такое равновесие возможно не во всех играх. Помните, как вы в детстве играли в «Камень, ножницы, бумага»? «Ножницы» режут «бумагу», «камень» бьет «ножницы», а «бумага» оборачивает «камень». Это игра с нулевой суммой, то есть если один участник выигрывает, другой проигрывает.

Игра «Камень, ножницы, бумага» кажется детям такой увлекательной за счет непредсказуемости исхода. А для теории игр она интересна тем, что в ней нет ни одного равновесия, при котором игроки действовали бы предсказуемо. Если действия игрока можно спрогнозировать, другой игрок воспользуется этим и выиграет. Поэтому участники стараются быть непредсказуемыми. У этой игры нет равновесия Нэша в чистых стратегиях.

В игре «Камень, ножницы, бумага», как мы уже сказали, нет равновесия Нэша в чистых стратегиях, однако в ней есть равновесие Нэша в смешанных стратегиях. Это значит, что в равновесной ситуации игроки наугад выбирают между несколькими возможными чистыми стратегиями: «камень», «ножницы» или «бумага».

Однако не все игры со случайным выбором имеют равновесие Нэша в смешанных стратегиях. Простого выбора наугад недостаточно. Смешанные стратегии игроков также должны быть их наилучшими ответами друг другу, чтобы сформировалось равновесие Нэша.

Давайте рассмотрим стратегию, которая не может поддерживать равновесие Нэша.

Предположим, что, согласно стратегии Джека, он выберет «бумагу» в 10 % случаев, «ножницы» в 10 %, а «камень» в 80 %.

Наилучшим ответом Сьюзан на стратегию Джека будет уверенно выбрать «бумагу», что будет значить, что вероятность ее выигрыша составит 80 % – как раз вероятность того, что Джек выберет «камень».

Стратегии Джека и Сьюзан не являются равновесием Нэша: выборы игроков – это не их наилучшие ответы друг другу. Учитывая стратегию Сьюзан, наилучшим ответом Джека было бы уверенно выбрать «ножницы» вместо его случайной стратегии.

В игре «Камень, ножницы, бумага» возможно только одно равновесие: каждый игрок выбирает смешанную стратегию, при которой он называет каждый из трех возможных вариантов («камень», «ножницы» или «бумага») с одинаковой вероятностью.

Джек делает случайный выбор, и у каждого варианта одинаковая вероятность. Это значит, что у Сьюзан нет никаких предпочтений относительно ее возможных выборов. Если Сьюзан выберет «ножницы», то вероятность ее выигрыша – один к трем (это случится, если Джек выберет «бумагу»); также это будет значить, что в этой ситуации вероятность ее проигрыша составит одну треть (если Джек выберет «камень»), и одну вероятность ничьей будет равно одной трети (если Джек также выберет «ножницы»). Но и любой другой выбор, помимо «ножниц», гарантирует Сьюзан те же выигрыши.

Такое же рассуждение рационально и для Джека. До тех пор пока существует одинаковая вероятность того, что Сьюзан выберет каждый из возможных вариантов, Джек будет получать те же выигрыши за выбор любого из трех вариантов. Поэтому он предпочитает делать случайный выбор.

Больше книг — больше знаний!

Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ