Простейшая система счисления

We use cookies. Read the Privacy and Cookie Policy

Вообще нетрудно сообразить, что в каждой системе высшая цифра, какая может понадобиться, равна основанию этой системы без единицы. Например, в 10-ичной системе высшая цифра 9, в 6-ричной - 5, в троичной - 2, в 15-ричной - 14, и т. д.

Самая простая система счисления, конечно, та, для которой требуется меньше всего цифр. В десятичной системе нужны 10 цифр (считая и 0), в пятиричной - 5 цифр, в троичной - 3 цифры (1, 2 и 0), в двоичной - только 2 цифры (1 и 0). Существует ли и «единичная» система? Конечно: это система, в которой единицы высшего разряда в один раз больше единицы низшего, т е. равны ей; другими словами, «единичной» можно назвать такую систему, в которой единицы всех разрядов имеют одинаковое значение. Это самая примитивная «система»; ею пользуется первобытный человек, делая на дереве зарубки по числу сосчитываемых предметов. Но между нею и всеми другими системами счета есть громадная разница: она лишена главного преимущества нашей нумерации - так называемого поместного значения цифр. Действительно: в «единичной» системе знак, стоящий на 3-м или 5-м месте, имеет то же значение, что и стоящий на первом месте. Между тем даже в двоичной системе единица на 3-м месте (справа) уже в 4 раза (2 x 2) больше, чем на первом, а на 5-м - в 16 раз больше (2 x 2 x 2 x 2). Поэтому система «единичная» дает очень мало выгоды, так как для изображения какого-нибудь числа по этой системе нужно ровно столько же знаков, сколько было сосчитано предметов: чтобы записать сто предметов нужно сто знаков, в двоичной же - только семь («1100100»), а в пятиричной - всего три («400»).

Вот почему «единичную» систему едва ли можно назвать «системой»; по крайней мере, ее нельзя поставить рядом с остальными, так как она принципиально от них отличается, не давая никакой экономии в изображении чисел. Если же ее откинуть, то простейшей системой счисления нужно признать систему двоичную, в которой употребляются всего две цифры: 1 и 0. При помощи 1-цы и 0 можно изобразить все бесконечное множество чисел! На практике система эта мало удобна - получаются слишком длинные числа[62]; но теоретически она имеет все права считаться простейшей. Она обладает некоторыми любопытными особенностями, присущими только ей одной; особенностями этими, между прочим, можно воспользоваться для выполнения ряда эффектных математических фокусов, о которых мы скоро побеседуем подробно в главе «Фокусы без обмана».

Больше книг — больше знаний!

Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом

ПОЛУЧИТЬ СКИДКУ