Шесть единиц
В соседней витрине мы видим такую диковинку арифметической кунсткамеры:

- число, состоящее из шести единиц. Благодаря знакомству с волшебными свойствами числа 1001, мы сразу соображаем, что
111111 = 111 x 1001.
Но 111 = 3x37, а 1001 = 7x11x13. Отсюда следует, что наш новый числовой феномен, состоящий из одних лишь единиц, представляет собою произведение пяти простых множителей. Соединяя же эти 5 множителей в две группы на всевозможные лады, мы получаем 15 пар множителей, дающих в произведении одно и то же число 111111:
3 x (7 x 11 x 13 x 37) = 3 x 37037 = 111111
7 x (3 x 11 x 13 x 37) = 7 x 15873 = 111111
11 x (3 x 7 x 13 x 37) = 11 x 10101 = 111111
13 x (3 x 7 x 11 x 37) = 13 x 8547 = 111111
37 x (3 x 7 x 11 x 13) = 37 x 3003 = 111111
(3 x 7) x (11 x 13 x 37) = 21 x 5291 = 111111
(3 x 11) x (7 x 13 x 37) = 33 x 3367 = 111111 и т. д.
Вы можете, значит, засадить общество из 15 человек за работу умножения, и хотя каждый будет перемножать другую пару чисел, все получат один и тот же оригинальный результат: 111111.
Задача № 33
То же число 111111 пригодно и для отгадывания задуманных чисел наподобие того, как выполняется это с помощью чисел 1001 и 10101. В данном случае нужно предлагать задумывать число однозначное, т. е. одну цифру, и повторять ее 6раз. Делителями здесь могут служить пять простых чисел: 3, 7, 11, 13, 37 и получающиеся из них составные: 21, 33, 39 и т. д. Это дает возможность до крайности разнообразить выполнение фокуса. Как надо поступать в этих случаях, - предоставляю придумать читателю.
Больше книг — больше знаний!
Заберите 30% скидку новым пользователям на все книги Литрес с нашим промокодом
ПОЛУЧИТЬ СКИДКУ