23. Решение задачи о ничьих при бросании монеты
Ниже мы обобщим метод решения задачи 22 и покажем, что вероятность отсутствия ничейного результата (при N четном и N нечетном) равна
Эти формулы показывают, что указанная вероятность одна и та же для четного N и для следующего за ним нечетного числа N + 1. Например, когда N = 4, надо применить вторую формулу. Шестнадцатью возможными исходами являются
ААAA BAAA ABBA BABB
*AAAB AABB BABA *BBAB
*AABA ABAB BBAA *BBBA
ABAA BAAB ABBB *BBBB
где звездочкой отмечены комбинации с равновесным положением.
Поскольку число сочетаний из 4 по 2 равно 6, то вторая формула действительно верна для этого значения N.
При N = 2n вероятность x выигрышей A есть
Если подставить в это выражение формулу для биномиальных коэффициентов и произвести необходимые сокращения, то с точностью до слагаемого
получим
Отсюда видно, что вероятность отсутствия ничьей есть
что после небольших преобразований может быть записано в виде
как было указано выше.